Chapter 02: Sequences of Real Numbers

By Hocine RANDJI randji.h@centre-univ-mila.dz Abdelhafid Boussouf University Center- Mila- Algeria Institute of Science and Technology First Year Engineering Module: Analysis 1 Semester 1

Academic Year: 2023/2024

[Chapter 02: Sequences of Real Numbers](#page-39-0)

Plan

- **•** References
- **•** Definitions
- Monotony of a Real Sequence
- Real Sequences and Order Relation
- **Subsequences**
- Convergence of a Sequence
- **Divergent Sequences**
- **Operations on Convergent Sequences**
- Adjacet Sequences
- Cauchy's Convergence Criterion
- **Recursive Sequences**
- Computation of Limits in 'Python'

: بالعربية $\ddot{\text{a}}$.
, .

 QQ

بالعربيه:
• بابا حامد، بن حبيب، التحيل 1 تذكير بالدروس و تمارين محلولة عدد .
.. $\ddot{\cdot}$ ֦֘ $\ddot{}$.
. J . . • بابا محامد، بن حبيب، انتخيل 1 تدنير باندروس و كمارين حنونه عدد
300 ترجمة الحفيظ مقران، ديوان المطبوعات الحامعية (**الفصل الثاني**) . In English: .
.)
.. $\ddot{\cdot}$. ا
. ֖֖֖֪֪֪֪֦֚֚֚֚֚֚֚֚֚֚֚֡֝֝֝֝֝֝֬֝֬֝֬֝֬֝֬֝֬֝֬֝֬֝֬֝֬֝֬ ŗ .
.
. . .
..

- Murray R. Spiegel, Schaum's outline of theory and problems of advanced calculus, Mcgraw-Hill (1968), (Chapter 3).
- Terence Tao, Analysis 1 (3rd edition), Springer (2016).

En français:

- BOUHARIS Epouse, OUDJDI DAMERDJI Amel, Cours et exercices corrigés d'Analyse 1, Première année Licence MI Mathématiques et Informatique, U.S.T.O 2020-2021 (Chapitre 3).
- **Benzine BENZINE, Analyse réelle cours et exercices corriges,** première année maths et informatique ([20](#page-1-0)[16\)](#page-3-0)[,](#page-1-0) [\(](#page-2-0)[C](#page-3-0)[ha](#page-0-0)[pi](#page-39-0)[tre](#page-0-0) [2](#page-39-0)[\)](#page-0-0)[.](#page-39-0)

Definitions:

• Definitions: A real sequence $(u_n)_{n\in\mathbb{N}}$ is defined by a function μ from the set of natural numbers N to the real numbers R.

$$
u: \mathbb{N} \to \mathbb{R}
$$

\n
$$
n \mapsto u(n) = u_n
$$
\n(1)

In this chapter we define $\mathbb{N} := \{0, 1, 2, \ldots\}$

- u_n is called **the general term** of the sequence $(u_n)_{n\in\mathbb{N}}$.
- \bullet u_0 is called the first term of the sequence.
- \bullet $(u_n)_{n\in\mathbb{N}}$ is called an arithmetic sequence if there exists $a \in \mathbb{R}$ such that $u_{n+1} - u_n = a$. In this case, we have $u_n = u_0 + na$ for all $n \in \mathbb{N}$.
- $(v_n)_{n\in\mathbb{N}}$ is called a geometric sequence if there exists $a \in \mathbb{R}$ such that $\frac{u_{n+1}}{u_n} = a$. In this case, we have $u_n = u_0 \cdot a^n$ for all $n \in \mathbb{N}$.

 200

Definition: Let $(u_n)_{n\in\mathbb{N}}$ be a real sequence.

- $(v_n)_{n\in\mathbb{N}}$ is called increasing (or strictly increasing) if: $∀n ∈ ℕ, u_{n+1} – u_n > 0$ (or $∀n ∈ ℕ, u_{n+1} – u_n > 0$).
- $(v_n)_{n\in\mathbb{N}}$ is called decreasing (or strictly decreasing) if: $\forall n \in \mathbb{N}, u_{n+1} - u_n \leq 0$ (or $\forall n \in \mathbb{N}, u_{n+1} - u_n \leq 0$).
- \bullet (u_n)_{n∈N} is called monotonic if it is either increasing or decreasing.
- $(u_n)_{n\in\mathbb{N}}$ is called strictly monotonic if it is either strictly increasing or strictly decreasing.

つくへ

Examples

1. For $u_n = n^2$, $n \in \mathbb{N}$, the sequence $(u_n)_{n \in \mathbb{N}}$ is increasing. In fact, $u_{n+1} - u_n = (n+1)^2 - n^2 = n^2 + 1 \ge 0$ for all $n \in \mathbb{N}$. 2. For $u_n = \frac{1}{n}$ $\frac{1}{n!}$, $n \in \mathbb{N}$, the sequence $(u_n)_{n \in \mathbb{N}}$ is decreasing. In fact, $u_{n+1} - u_n = -\frac{n}{(n+1)!} \leq 0$ for all $n \in \mathbb{N}$.

Definition Let $(u_n)_{n\in\mathbb{N}}$ be a real sequence.

- $(u_n)_{n\in\mathbb{N}}$ is called upper bounded if: $\exists M \in \mathbb{R}, \forall n \in \mathbb{N}, u_n \leq M$.
- $(u_n)_{n\in\mathbb{N}}$ is called lower bounded if: $\exists m\in\mathbb{R}, \forall n\in\mathbb{N}, m\leq u_n$.
- $(u_n)_{n\in\mathbb{N}}$ is called bounded if it is both upper bounded and lower bounded, or if there exists $P > 0$ such that $|u_n| \leq P$.
- **1** If $\forall n \in \mathbb{N}, u_n = \sin(n)$, then the sequence $(u_n)_{n \in \mathbb{N}}$ is bounded. Indeed, $|u_n| \leq 1$ for all $n \in \mathbb{N}$.
- $\textbf{2}$ The sequence $(u_n)_{n\in \mathbb{N}};$ where $u_n=n^3$ is bounded below by 0 but it is not bounded above.

Definition: Let $(u_n)_{n \in \mathbb{N}}$ be a real sequence and φ be a strictly increasing function from $\mathbb N$ to $\mathbb N$. The sequence $(u_{\varphi(n)})_{n\in\mathbb N}$ is called a subsequence or an extracted sequence of $(u_n)_{n\in\mathbb{N}}$.

つくへ

Example: Let $(u_n)_{n\in\mathbb{N}^*}$ be a real sequence defined by $u_n = (-1)^n \frac{1}{n}$. We can extract two subsequences $(u_{2n})_{n \in \mathbb{N}^*}$ and $(u_{2n+1})_{n\in\mathbb{N}}$ such that:

$$
u_{2n}=\frac{1}{2n}, \forall n\in\mathbb{N}^*
$$

$$
u_{2n+1} = -\frac{1}{2n+1}
$$

[Chapter 02: Sequences of Real Numbers](#page-0-0)

Convergence of a Sequence:

Definition Let $(u_n)_{n\in\mathbb{N}}$ be a real sequence. We say that $(u_n)_{n\in\mathbb{N}}$ is convergent if there exists a real number $l \in \mathbb{R}$ such that for every $\varepsilon > 0$, there exists $n_{\varepsilon} \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ with $n \ge n_{\varepsilon}$, implies $|u_n - l| < \varepsilon$. We denote this as:

 $\lim_{n\to+\infty}u_n=1$

and we say that *l* is the limit of $(u_n)_{n\in\mathbb{N}}$.

Example Consider the sequence $(u_n)_{n\in\mathbb{N}}$ defined by $u_n=1-\frac{2}{5n}$ $rac{2}{5n}$. Let's show that $(u_n)_{n\in\mathbb{N}}$ converges to 1. $(\lim_{n\to+\infty}u_n=1)\Leftrightarrow$ $(\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n_{\varepsilon} \Rightarrow |u_n - 1| < \varepsilon)$

$$
|u_n-1|<\varepsilon \Leftrightarrow \frac{2}{5n}<\varepsilon \Leftrightarrow n>\frac{2}{5\varepsilon}
$$

So, it suffices to take $n_{\varepsilon} = \left\lceil \frac{2}{5\varepsilon} \right\rceil$ $\frac{2}{5\varepsilon}$ +1.

[Chapter 02: Sequences of Real Numbers](#page-0-0)

Theorem If $(u_n)_{n\in\mathbb{N}}$ is a convergent sequence, then its limit is unique.

Proof: Let's assume by contradiction that $(u_n)_{n\in\mathbb{N}}$ converges to two different limits l_1 and l_2 such that $l_1 \neq l_2$. Then we have:

 $(\lim_{n\to+\infty}u_n=l_1)\Rightarrow$ $(\forall \varepsilon > 0, \exists n_{\varepsilon_1} \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n_{\varepsilon_1} \Rightarrow |u_n - h| < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$ $(\lim_{n\to+\infty}u_n=l_2)\Rightarrow$ $(\forall \varepsilon > 0, \exists n_{\varepsilon_2} \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n_{\varepsilon_2} \Rightarrow |u_n - h_2| < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$ Now, let $n_{\varepsilon_0} = \max(n_{\varepsilon_1},n_{\varepsilon_2})$, then for all $n \geq n_{\varepsilon_0},$ we have:

$$
|l_2 - l_1| = |(u_n - l_1) + (l_2 - u_n)| \le |(u_n - l_1)| + |(u_n - l_2)| < \varepsilon
$$

This leads to $|l_2 - l_1| < \varepsilon$. Regardless of how small the positive number ε , this statement holds true. So, ε must be zero, which contradicts the assumption $l_1 \neq l_2$. Therefore, $l_1 = l_2$, which is absurd.

同→ (ヨ → (ヨ →

Remark: A sequence is said to be divergent if it tends towards infinity, or if it has multiple different limits.

Definition: Let $(u_n)_{n\in\mathbb{N}}$ be a real sequence.

- $\lim_{n\to+\infty}u_n=+\infty$ if and only if $\forall A > 0, \exists n_A \in \mathbb{N}, \forall n \in \mathbb{N}, n > n_A \Rightarrow u_n > A.$
- \bullet lim_{n→+∞} $u_n = -\infty$ if and only if $\forall B < 0, \exists n_B \in \mathbb{N}, \forall n \in \mathbb{N}, n > n_B \Rightarrow u_n < B.$

Proposition: If $(u_n)_{n\in\mathbb{N}}$ is a divergent sequence such that $\lim_{n\to+\infty}u_n=+\infty$ (resp. $\lim_{n\to+\infty}u_n=-\infty$), and $(v_n)_{n\in\mathbb{N}}$ is a sequence such that $u_n \le v_n$ (resp. $u_n \ge v_n$) for all $n \in \mathbb{N}$, then the sequence $(v_n)_{n\in\mathbb{N}}$ is divergent and we have $\lim_{n\to+\infty} v_n = +\infty$ (resp. $\lim_{n\to+\infty} v_n = -\infty$).

[Chapter 02: Sequences of Real Numbers](#page-0-0)

 200

Proof: Indeed, for every $A > 0$, there exists $n_A \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, $n \ge n_A \Rightarrow u_n > A$ and $u_n \le v_n$ for all $n \in \mathbb{N}$. Therefore, for every $A > 0$, there exists $n_A \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, $n \ge n_A \Rightarrow v_n > A$, which implies $\lim_{n \to +\infty} v_n = +\infty$.

[Chapter 02: Sequences of Real Numbers](#page-0-0)

Proposition Every convergent sequence is bounded. Remarks:

- By contrapositive, an unbounded sequence is divergent.
- ² The converse is not always true; a bounded sequence is not always convergent.

Example Let $u_n = (-1)^n$ for all $n \in \mathbb{N}$. Then the sequence $(u_n)_{n\in\mathbb{N}}$ is bounded because for all $n \in \mathbb{N}$, $|(-1)^n| \leq 1$. However, $(u_n)_{n\in\mathbb{N}}$ is divergent because it has two different limits: $\lim_{n\to+\infty}u_n=$ $\int 1$ if *n* is even -1 if *n* is odd

つくへ

Proposition If $(u_n)_{n\in\mathbb{N}}$ is a convergent sequence, then all its subsequences converge to the same limit. Remark: By contrapositive, it is sufficient to find two subsequences that do not converge to the same limit in order to conclude that a sequence is divergent.

Theorem: Let $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ be two sequences converging respectively to the limits l_1 and l_2 , and let $\lambda \in \mathbb{R}$. Then the sequences $(u_n+v_n)_{n\in\mathbb{N}},\ (\lambda u_n)_{n\in\mathbb{N}},\ (u_n v_n)_{n\in\mathbb{N}},\ \left(\frac{u_n}{v_n}\right)_{n\in\mathbb{N}},$ $\frac{u_n}{v_n}$ $n \in \mathbb{N}$, and $(|u_n|)_{n\in\mathbb{N}}$ also converge, and we have:

[Chapter 02: Sequences of Real Numbers](#page-0-0)

ഹൈ

- **1** lim_{n→+∞} $(u_n + v_n) = l_1 + l_2$.
- **2** $\lim_{n \to \infty} (\lambda u_n) = \lambda I_1$.
- \bullet lim_{n→+∞} $(u_n v_n) = l_1 \cdot l_2$.
- **4** $\lim_{n \to +\infty} \frac{u_n}{v_n}$ $\frac{u_n}{v_n} = \frac{l_1}{l_2}$ $\frac{l_1}{l_2}$ if $l_2 \neq 0$.
- \bullet $\lim_{n\to+\infty} |u_n| = |h|.$

Remarks:

- **1** The sum of two divergent sequences can be convergent.
- **2** The absolute value of a divergent sequence can be convergent. Examples:
	- **1** Let $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ be defined as: $u_n = 2n$ and $v_n = -2n + e^{-n}$ for all $n \in \mathbb{N}$. Both $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ are divergent. However, the sequence $(u_n + v_n)_{n \in \mathbb{N}}$ is convergent because $u_n + v_n = e^{-n}$ for all $n \in \mathbb{N}$.
	- 2 Let $u_n = (-1)^n$ for all $n \in \mathbb{N}$. The sequence $(u_n)_{n \in \mathbb{N}}$ is divergent. However, we have $|u_n| = 1$ for all $n \in \mathbb{N}$, hence the sequence $(|u_n|)_{n\in\mathbb{N}}$ is convergent.

- **■** If $(u_n)_{n\in\mathbb{N}}$ is a convergent sequence such that $u_n > 0$ for all $n \in \mathbb{N}$ (resp. $u_n < 0$ for all $n \in \mathbb{N}$), then $\lim_{n \to +\infty} u_n > 0$ (resp. $\lim_{n\to+\infty}u_n<0$).
- **2** If $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ are two convergent sequences such that $u_n < v_n$ for all $n \in \mathbb{N}$, then $\lim_{n \to +\infty} u_n \leq \lim_{n \to +\infty} v_n$.

つくへ

Proof:

1. Since $u_n > 0$ for all $n \in \mathbb{N}$ and $l = \lim_{n \to +\infty} u_n$, we can show that $l > 0$.

By assuming the opposite $l < 0$. Let $\varepsilon = \frac{|l|}{2} > 0$, then there exists

 $n_{\varepsilon} \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, $n \ge n_{\varepsilon} \Rightarrow |u_n - l| < \frac{|l|}{2}$ $\frac{1}{2}$,

 $|l-\frac{|l|}{2}< u_n < l+\frac{|l|}{2}< 0$, which is absurd because $u_n>0$ for all $n \in \mathbb{N}$.

2. Since $u_n < v_n$ for all $n \in \mathbb{N}$, let $l_1 = \lim_{n \to +\infty} u_n$ and $l_2 = \lim_{n \to +\infty} v_n$. Suppose by contradiction that $l_2 < l_1$, and let $\varepsilon = \frac{l_1 - l_2}{2} > 0$. Then there exists $n_\varepsilon \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, $n \ge n_{\varepsilon} \Rightarrow |u_n - h| < \frac{h - h_2}{2}$, which implies $\frac{l_1+l_2}{2} < u_n < \frac{3l_1-l_2}{2}$ (1). Also, there exists $n'_{\varepsilon}\in\mathbb{N}$ such that for all $n\in\mathbb{N},$ $n \geq n'_{\varepsilon} \Rightarrow |v_n - l_2| < \frac{l_1 - l_2}{2}$, leading to $\frac{3l_2-l_1}{2} < v_n < \frac{l_1+l_2}{2}$ (2). Let $n''_{\varepsilon} = \max(n_{\varepsilon}, n'_{\varepsilon})$. Combining (1) and (2), we have $\exists n''_{\varepsilon} \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, $n \ge n''_{\varepsilon} \Rightarrow v_n < \frac{l_1 + l_2}{2} < u_n$. Therefore, $v_n < u_n$, which is absurd because $u_n < v_n$ for all $n \in \mathbb{N}$. Alternatively, we can view this property as a direct consequence of the first one, where we simply set $w_n = v_n - u_n$. Since $w_n > 0$ for all $n \in \mathbb{N}$, we have $\lim_{n \to +\infty} w_n \geq 0$, implying $\lim_{n\to+\infty}$ $(v_n - u_n) \ge 0$, which further leads to $\lim_{n\to+\infty} v_n > \lim_{n\to+\infty} u_n$.

- イヨ → イヨ →

 200

Theorem: Any increasing (resp. decreasing) and bounded above (resp. bounded below) sequence converges to its supremum (resp. infimum).

Proof: Let $(u_n)_{n\in\mathbb{N}}$ be an increasing and bounded above sequence. Then, for all $n \in \mathbb{N}$, $u_n \le u_{n+1}$, and there exists $M \in \mathbb{R}$ such that $u_n \leq M$. Let $E = \{u_n, n \in \mathbb{N}\}\$ and $u = \sup(E)$. According to the characterization of the supremum, we have, for every $\varepsilon > 0$, there exists $p \in \mathbb{N}$ such that $u - \varepsilon < u_p$. Since (u_n) is increasing, for all $n \in \mathbb{N}$ such that $n \geq p$, we have $u_n \leq u_n$. Now, since $u_n \leq u$, we get $u - \varepsilon < u_p \leq u_n \leq u < u + \varepsilon$. Hence, for every $\varepsilon > 0$, there exists $p \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ such that $n \geq p$, we have $|u_n - u| < \varepsilon$. Therefore, $\lim_{n \to +\infty} u_n = \sup(E)$.

Theorem: Let $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ and $(w_n)_{n\in\mathbb{N}}$ be three real sequences such that for all $n \ge n_0$, $u_n \le v_n \le w_n$, and $\lim_{n\to+\infty}u_n=\lim_{n\to+\infty}w_n=1$, then $\lim_{n\to+\infty}v_n=1$. **Proof:** Let $\varepsilon > 0$. There exists $n_1 \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ such that $n > n_1$, we have $|u_n - l| < \varepsilon$ which implies $l - \varepsilon < u_n < l + \varepsilon$. Similarly, there exists $n_2 \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ such that $n \ge n_2$, we have $|w_n - l| < \varepsilon$ which implies $l - \varepsilon < w_n < l + \varepsilon$. Let $n_3 = \max(n_0, n_1, n_2)$. Then, for all $n \in \mathbb{N}$ such that $n \ge n_3$, we have $l - \varepsilon < u_n < v_n < w_n < l + \varepsilon$, which leads to $1 - \varepsilon < v_n < l + \varepsilon$ or $|v_n - l| < \varepsilon$. Therefore, for every $\varepsilon > 0$, there exists $n_3 \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ such that $n \geq n_3$, we have $|v_n - l| < \varepsilon$, which concludes that $\lim_{n \to +\infty} v_n = l$.

Theorem: Let $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ be two real sequences such that $\lim_{n\to+\infty}u_n=0$ and $(v_n)_{n\in\mathbb{N}}$ is bounded. Then $\lim_{n\to+\infty}u_n\cdot v_n=0.$ **Proof:** Since $(v_n)_{n\in\mathbb{N}}$ is bounded, there exists $M > 0$ such that $|v_n| \leq M$ for all $n \in \mathbb{N}$. Also, $\lim_{n \to \infty} u_n = 0$ implies that for every $\varepsilon > 0$, there exists $n_{\varepsilon} \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ such that $n \geq n_{\varepsilon}$, we have $|u_n| < \frac{\varepsilon}{N}$ $\frac{\varepsilon}{M}$. This leads to $|u_n\cdot v_n| = |u_n|\cdot |v_n| < \frac{\varepsilon}{M}$ $\frac{\varepsilon}{M} \cdot M = \varepsilon$. Thus, for every $\varepsilon > 0$, there exists $n_{\varepsilon} \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ such that $n \ge n_{\varepsilon}$, we have $|u_n \cdot v_n| < \varepsilon$, which means $\lim_{n \to +\infty} u_n \cdot v_n = 0$.

[Chapter 02: Sequences of Real Numbers](#page-0-0)

Theorem (Bolzano-Weierstrass): Every bounded real sequence $(u_n)_{n\in\mathbb{N}}$ has a convergent subsequence.

[Chapter 02: Sequences of Real Numbers](#page-0-0)

Definition: Let $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ be two real sequences, such that $(u_n)_{n\in\mathbb{N}}$ is increasing and $(v_n)_{n\in\mathbb{N}}$ is decreasing. The sequences $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ are called adjacent if $\lim_{n\to+\infty}(u_n-v_n)=0$.

[Chapter 02: Sequences of Real Numbers](#page-0-0)

つくへ

Theorem: Two adjacent real sequences converge to the same limit. **Example:** The sequences $(u_n)_{n\in\mathbb{N}^*}$ and $(v_n)_{n\in\mathbb{N}^*}$ defined by $u_n = \sum_{k=1}^n \frac{1}{k!}$ $\frac{1}{k!}$ and $v_n = u_n + \frac{1}{n!}$ $\frac{1}{n!}$ respectively, converge to the same limit since they are adjacent. Indeed, $(u_n)_{n\in\mathbb{N}^*}$ is increasing, $(v_n)_{n\in\mathbb{N}^*}$ is decreasing, and we have $\lim_{n\to+\infty} (v_n - u_n) = \lim_{n\to+\infty} \frac{1}{n!} = 0.$

Cauchy's Convergence Criterion

Theorem: Let $(u_n)_{n\in\mathbb{N}}$ be a convergent sequence. Then, $(u_n)_{n\in\mathbb{N}}$ possesses the following property known as the Cauchy criterion. For any $\varepsilon > 0$, there exists an integer N such that for every pair of integers p and q greater than N, we have $|u_p - u_q| < \varepsilon$.

Figure:

proof: Let ℓ be the limit of the sequence. We have

$$
|u_p - u_q| = |u_p - l + l - u_q| \le |u_p - l| + |l - u_q|
$$

The sequence $(u_n)_{n\in\mathbb{N}}$ converges to *l*. Therefore, by definition, for any $\varepsilon > 0$, we can associate an integer N such that for all $p > N$, we have $|u_p - l| < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$, and for all integer $q > N$, we have $|u_q - l| < \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$. For any pair of integers p and q greater than N,

$$
|u_p - u_q| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \quad \Box
$$

This brings us to the following definition:

Definition: We say that a sequence $(u_n)_{n\in\mathbb{N}}$ is a Cauchy sequence if it possesses the following property, known as the Cauchy criterion: For any $\varepsilon > 0$, there exists a natural number N such that for any pair of integers p and q greater than N , we have

 $|u_n - u_n| < \varepsilon$

or, in short,

 $\forall \varepsilon > 0, \exists N, \forall p, \forall q, \quad (p, q > N \Rightarrow |u_p - u_q| < \varepsilon)$

 200

[Chapter 02: Sequences of Real Numbers](#page-0-0)

Example: Show that $(u_n)_{n\in\mathbb{N}}$ is a Cauchy sequence where $u_n=\frac{1}{n}$ $\frac{1}{n}$. We have $|u_p-u_q|=|\frac{1}{p}-\frac{1}{q}|$ $\frac{1}{|q|}|\leq |\frac{1}{p}|+|-\frac{1}{q}|.$ Let us take

$$
\begin{cases}\n q > N \\
 p > N\n\end{cases}\n\implies\n\begin{cases}\n\frac{1}{q} < \frac{1}{N} \\
\frac{1}{p} < \frac{1}{N}\n\end{cases}
$$

Thus, $|u_p - u_q| \leq \frac{1}{q} + \frac{1}{p} < \frac{1}{N} + \frac{1}{N}$ $\frac{1}{N}$. So that $|u_p - u_q| < \varepsilon$, it suffices that $\frac{2}{N} < \varepsilon$. And so it suffices to take:

$$
N = \left[\frac{2}{\varepsilon}\right] + 1
$$

[Chapter 02: Sequences of Real Numbers](#page-0-0)

つくへ

Definition

Let $f: D \subset \mathbb{R} \to \mathbb{R}$ be a function. We call a recursive sequence a sequence (u_n) for $n \in \mathbb{N}$ defined by $u_0 \in D$ and the relation

 $\forall n \in \mathbb{N}: u_{n+1} = f(u_n).$

In the study of recursive sequences, we always assume that $f(D) \subseteq D$. **Example:** Let $u_n = 2u_{n-1} + 1$ and $u_0 = 1$ we can compute the next terms:

$$
u_1 = 2 \cdot 1 + 1 = 3
$$

$$
u_2 = 2 \cdot 3 + 1 = 7
$$

[Chapter 02: Sequences of Real Numbers](#page-0-0)

Remarks:

- \bullet If the function f is increasing, then studying the monotony of $(u_n)_{n\in\mathbb{N}}$ is given by examining the sign of the difference $f(u_0) - u_0$.
	- If $f(u_0) u_0 > 0$, then the sequence $(u_n)_{n \in \mathbb{N}}$ is increasing.
	- If $f(u_0) u_0 < 0$, then the sequence $(u_n)_{n \in \mathbb{N}}$ is decreasing.
- \bullet If the function f is monotonic and continuous on D, and the sequence $(u_n)_{n\in\mathbb{N}}$ converges to a limit $l\in D$, then its limit satisfies the equation $f(l) = l$.

つくへ

Computation of Limits in 'Python'

In Python, you can; for example , use the 'sympy' library to perform the limit as $n \to \infty$ of the sequence defined by $u_n = f(n)$ is determined by the commands:

This code uses 'sympy' to define a symbolic variable 'n' and then uses 'sp.limit' to calculate the limit of the sequence (u_n) where: $u_n = \frac{3n-1}{4n+5}$ $\frac{3n-1}{4n+5}$. The function 'sp.oo' represents infinity in sympy. Using ' $print(...)$, the result will be:

 $3/4$

If one takes $u_n = n$, then he can write the code:

and find the result (infinity):

 $A \equiv 1$ 299 ∍ ∍ ← 中 \rightarrow

[Chapter 02: Sequences of Real Numbers](#page-0-0)

Thanks

[Chapter 02: Sequences of Real Numbers](#page-0-0)