Chapter 02: Sequences of Real Numbers

By Hocine RANDJI randji.h@centre-univ-mila.dz Abdelhafid Boussouf University Center- Mila- Algeria Institute of Science and Technology First Year Engineering Module: Analysis 1 Semester 1

Academic Year: 2023/2024

Plan

- References
- Definitions
- Monotony of a Real Sequence
- Real Sequences and Order Relation
- Subsequences
- Convergence of a Sequence
- Divergent Sequences
- Operations on Convergent Sequences
- Adjacet Sequences
- Cauchy's Convergence Criterion
- Recursive Sequences
- Computation of Limits in 'Python'

بابا حامد، بن حبيب، التحيل 1 تذكير بالدروس و تمارين محلولة عدد 300 ترجمة الحفيظ مقران، ديوان المطبوعات الجامعية (الفصل الثاني) . In English:

- Murray R. Spiegel, Schaum's outline of theory and problems of advanced calculus, Mcgraw-Hill (1968), (Chapter 3).
- Terence Tao, Analysis 1 (3rd edition), Springer (2016).

En français:

- BOUHARIS Epouse, OUDJDI DAMERDJI Amel, Cours et exercices corrigés d'Analyse 1, Première année Licence MI Mathématiques et Informatique, U.S.T.O 2020-2021 (Chapitre 3).
- Benzine BENZINE, Analyse réelle cours et exercices corriges, première année maths et informatique (2016), (Chapitre 2).

Definitions:

Definitions: A real sequence (u_n)_{n∈N} is defined by a function
 u from the set of natural numbers N to the real numbers R.

$$u: \mathbb{N} \to \mathbb{R}$$
(1)
$$n \mapsto u(n) = u_n$$
(2)

In this chapter we define $\mathbb{N} := \{0, 1, 2, ..\}$

- u_n is called **the general term** of the sequence $(u_n)_{n \in \mathbb{N}}$.
- u_0 is called **the first term** of the sequence.
- $(u_n)_{n \in \mathbb{N}}$ is called **an arithmetic sequence** if there exists $a \in \mathbb{R}$ such that $u_{n+1} u_n = a$. In this case, we have $u_n = u_0 + na$ for all $n \in \mathbb{N}$.
- $(u_n)_{n \in \mathbb{N}}$ is called a geometric sequence if there exists $a \in \mathbb{R}$ such that $\frac{u_{n+1}}{u_n} = a$. In this case, we have $u_n = u_0 \cdot a^n$ for all $n \in \mathbb{N}$.

Definition: Let $(u_n)_{n \in \mathbb{N}}$ be a real sequence.

- $(u_n)_{n\in\mathbb{N}}$ is called increasing (or strictly increasing) if: $\forall n \in \mathbb{N}, u_{n+1} - u_n \ge 0$ (or $\forall n \in \mathbb{N}, u_{n+1} - u_n > 0$).
- $(u_n)_{n\in\mathbb{N}}$ is called decreasing (or strictly decreasing) if: $\forall n \in \mathbb{N}, u_{n+1} - u_n \leq 0$ (or $\forall n \in \mathbb{N}, u_{n+1} - u_n < 0$).
- (u_n)_{n∈ℕ} is called monotonic if it is either increasing or decreasing.
- (u_n)_{n∈ℕ} is called strictly monotonic if it is either strictly increasing or strictly decreasing.

Examples

1. For $u_n = n^2$, $n \in \mathbb{N}$, the sequence $(u_n)_{n \in \mathbb{N}}$ is increasing. In fact, $u_{n+1} - u_n = (n+1)^2 - n^2 = n^2 + 1 \ge 0$ for all $n \in \mathbb{N}$. 2. For $u_n = \frac{1}{n!}$, $n \in \mathbb{N}$, the sequence $(u_n)_{n \in \mathbb{N}}$ is decreasing. In fact, $u_{n+1} - u_n = -\frac{n}{(n+1)!} \le 0$ for all $n \in \mathbb{N}$. **Definition** Let $(u_n)_{n \in \mathbb{N}}$ be a real sequence.

- $(u_n)_{n\in\mathbb{N}}$ is called upper bounded if: $\exists M \in \mathbb{R}, \forall n \in \mathbb{N}, u_n \leq M$.
- $(u_n)_{n\in\mathbb{N}}$ is called lower bounded if: $\exists m \in \mathbb{R}, \forall n \in \mathbb{N}, m \leq u_n$.
- (u_n)_{n∈N} is called bounded if it is both upper bounded and lower bounded, or if there exists P > 0 such that |u_n| ≤ P.

- If $\forall n \in \mathbb{N}$, $u_n = \sin(n)$, then the sequence $(u_n)_{n \in \mathbb{N}}$ is bounded. Indeed, $|u_n| \le 1$ for all $n \in \mathbb{N}$.
- ② The sequence $(u_n)_{n \in \mathbb{N}}$; where $u_n = n^3$ is bounded below by 0 but it is not bounded above.

Definition: Let $(u_n)_{n \in \mathbb{N}}$ be a real sequence and φ be a strictly increasing function from \mathbb{N} to \mathbb{N} . The sequence $(u_{\varphi(n)})_{n \in \mathbb{N}}$ is called a subsequence or an extracted sequence of $(u_n)_{n \in \mathbb{N}}$.

Example: Let $(u_n)_{n \in \mathbb{N}^*}$ be a real sequence defined by $u_n = (-1)^n \frac{1}{n}$. We can extract two subsequences $(u_{2n})_{n \in \mathbb{N}^*}$ and $(u_{2n+1})_{n \in \mathbb{N}}$ such that:

$$u_{2n}=\frac{1}{2n},\forall n\in\mathbb{N}^*$$

$$u_{2n+1} = -\frac{1}{2n+1}$$

Convergence of a Sequence:

Definition Let $(u_n)_{n \in \mathbb{N}}$ be a real sequence. We say that $(u_n)_{n \in \mathbb{N}}$ is convergent if there exists a real number $l \in \mathbb{R}$ such that for every $\varepsilon > 0$, there exists $n_{\varepsilon} \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ with $n \ge n_{\varepsilon}$, implies $|u_n - l| < \varepsilon$. We denote this as:

 $\lim_{n\to+\infty}u_n=I$

and we say that *I* is the limit of $(u_n)_{n \in \mathbb{N}}$.

Example Consider the sequence $(u_n)_{n \in \mathbb{N}}$ defined by $u_n = 1 - \frac{2}{5n}$. Let's show that $(u_n)_{n \in \mathbb{N}}$ converges to 1. $(\lim_{n \to +\infty} u_n = 1) \Leftrightarrow$ $(\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n_{\varepsilon} \Rightarrow |u_n - 1| < \varepsilon)$

$$|u_n-1|<\varepsilon \Leftrightarrow \frac{2}{5n}<\varepsilon \Leftrightarrow n>\frac{2}{5\varepsilon}$$

So, it suffices to take $n_{\varepsilon} = \left\lceil \frac{2}{5\varepsilon} \right\rceil + 1$.

Theorem If $(u_n)_{n \in \mathbb{N}}$ is a convergent sequence, then its limit is unique.

Proof: Let's assume by contradiction that $(u_n)_{n \in \mathbb{N}}$ converges to two different limits l_1 and l_2 such that $l_1 \neq l_2$. Then we have:

 $\begin{array}{l} (\lim_{n \to +\infty} u_n = l_1) \Rightarrow \\ (\forall \varepsilon > 0, \exists n_{\varepsilon_1} \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n_{\varepsilon_1} \Rightarrow |u_n - l_1| < \frac{\varepsilon}{2}) \\ (\lim_{n \to +\infty} u_n = l_2) \Rightarrow \\ (\forall \varepsilon > 0, \exists n_{\varepsilon_2} \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n_{\varepsilon_2} \Rightarrow |u_n - l_2| < \frac{\varepsilon}{2}) \\ \text{Now, let } n_{\varepsilon_0} = \max(n_{\varepsilon_1}, n_{\varepsilon_2}), \text{ then for all } n \ge n_{\varepsilon_0}, \text{ we have:} \end{array}$

$$|l_2 - l_1| = |(u_n - l_1) + (l_2 - u_n)| \le |(u_n - l_1)| + |(u_n - l_2)| < \varepsilon$$

This leads to $|l_2 - l_1| < \varepsilon$. Regardless of how small the positive number ε , this statement holds true. So, ε must be zero , which contradicts the assumption $l_1 \neq l_2$. Therefore, $l_1 = l_2$, which is absurd.

Remark: A sequence is said to be divergent if it tends towards infinity, or if it has multiple different limits.

Definition: Let $(u_n)_{n \in \mathbb{N}}$ be a real sequence.

- $\lim_{n \to +\infty} u_n = +\infty$ if and only if $\forall A > 0, \exists n_A \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n_A \Rightarrow u_n > A.$
- $\lim_{n \to +\infty} u_n = -\infty$ if and only if $\forall B < 0, \exists n_B \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n_B \Rightarrow u_n < B.$

Proposition: If $(u_n)_{n \in \mathbb{N}}$ is a divergent sequence such that $\lim_{n \to +\infty} u_n = +\infty$ (resp. $\lim_{n \to +\infty} u_n = -\infty$), and $(v_n)_{n \in \mathbb{N}}$ is a sequence such that $u_n \leq v_n$ (resp. $u_n \geq v_n$) for all $n \in \mathbb{N}$, then the sequence $(v_n)_{n \in \mathbb{N}}$ is divergent and we have $\lim_{n \to +\infty} v_n = +\infty$ (resp. $\lim_{n \to +\infty} v_n = -\infty$).

Proof: Indeed, for every A > 0, there exists $n_A \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, $n \ge n_A \Rightarrow u_n > A$ and $u_n \le v_n$ for all $n \in \mathbb{N}$. Therefore, for every A > 0, there exists $n_A \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, $n \ge n_A \Rightarrow v_n > A$, which implies $\lim_{n \to +\infty} v_n = +\infty$.

Proposition Every convergent sequence is bounded. **Remarks:**

- **1** By contrapositive, an unbounded sequence is divergent.
- The converse is not always true; a bounded sequence is not always convergent.

Example Let $u_n = (-1)^n$ for all $n \in \mathbb{N}$. Then the sequence $(u_n)_{n \in \mathbb{N}}$ is bounded because for all $n \in \mathbb{N}$, $|(-1)^n| \leq 1$. However, $(u_n)_{n \in \mathbb{N}}$ is divergent because it has two different limits: $\lim_{n \to +\infty} u_n = \begin{cases} 1 & \text{if } n \text{ is even} \\ -1 & \text{if } n \text{ is odd} \end{cases}$

Proposition If $(u_n)_{n \in \mathbb{N}}$ is a convergent sequence, then all its subsequences converge to the same limit. **Remark:** By contrapositive, it is sufficient to find two subsequences that do not converge to the same limit in order to conclude that a sequence is divergent. **Theorem:** Let $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ be two sequences converging respectively to the limits l_1 and l_2 , and let $\lambda \in \mathbb{R}$. Then the sequences $(u_n + v_n)_{n \in \mathbb{N}}$, $(\lambda u_n)_{n \in \mathbb{N}}$, $(u_n v_n)_{n \in \mathbb{N}}$, $\left(\frac{u_n}{v_n}\right)_{n \in \mathbb{N}}$, and $(|u_n|)_{n \in \mathbb{N}}$ also converge, and we have:

- $1 \quad \lim_{n\to+\infty}(u_n+v_n)=l_1+l_2.$
- $lim_{n\to+\infty}(\lambda u_n) = \lambda l_1.$
- $im_{n\to+\infty}(u_nv_n)=l_1\cdot l_2.$
- $Iim_{n \to +\infty} \frac{u_n}{v_n} = \frac{l_1}{l_2} \text{ if } l_2 \neq 0.$
- $Iim_{n\to+\infty} |u_n| = |l_1|.$

Remarks:

- In the sum of two divergent sequences can be convergent.
- The absolute value of a divergent sequence can be convergent.
 Examples:
 - Let (u_n)_{n∈N} and (v_n)_{n∈N} be defined as: u_n = 2n and v_n = -2n + e⁻ⁿ for all n ∈ N. Both (u_n)_{n∈N} and (v_n)_{n∈N} are divergent. However, the sequence (u_n + v_n)_{n∈N} is convergent because u_n + v_n = e⁻ⁿ for all n ∈ N.
 - 2 Let u_n = (-1)ⁿ for all n ∈ N. The sequence (u_n)_{n∈N} is divergent. However, we have |u_n| = 1 for all n ∈ N, hence the sequence (|u_n|)_{n∈N} is convergent.

- If (u_n)_{n∈ℕ} is a convergent sequence such that u_n > 0 for all n ∈ ℕ (resp. u_n < 0 for all n ∈ ℕ), then lim_{n→+∞} u_n ≥ 0 (resp. lim_{n→+∞} u_n ≤ 0).
- ② If $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ are two convergent sequences such that $u_n < v_n$ for all $n \in \mathbb{N}$, then $\lim_{n \to +\infty} u_n \leq \lim_{n \to +\infty} v_n$.

Proof:

1. Since $u_n > 0$ for all $n \in \mathbb{N}$ and $l = \lim_{n \to +\infty} u_n$, we can show that $l \ge 0$. By assuming the opposite l < 0. Let $\varepsilon = \frac{|l|}{2} > 0$, then there exists $n_{\varepsilon} \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, $n \ge n_{\varepsilon} \Rightarrow |u_n - l| < \frac{|l|}{2}$, $l - \frac{|l|}{2} < u_n < l + \frac{|l|}{2} < 0$, which is absurd because $u_n > 0$ for all $n \in \mathbb{N}$. 2. Since $u_n < v_n$ for all $n \in \mathbb{N}$, let $l_1 = \lim_{n \to +\infty} u_n$ and $l_2 = \lim_{n \to +\infty} v_n$. Suppose by contradiction that $l_2 < l_1$, and let $\varepsilon = \frac{l_1 - l_2}{2} > 0$. Then there exists $n_{\varepsilon} \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, $n \geq n_{\varepsilon} \Rightarrow |u_n - l_1| < \frac{l_1 - l_2}{2}$, which implies $\frac{h_1+h_2}{2} < u_n < \frac{3h_1-h_2}{2}$ (1). Also, there exists $n'_{\varepsilon} \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, $n \geq n_{\epsilon}' \Rightarrow |v_n - l_2| < \frac{l_1 - l_2}{2}$, leading to $\frac{3l_2-l_1}{2} < v_n < \frac{l_1+l_2}{2}$ (2). Let $n_{\varepsilon}'' = \max(n_{\varepsilon}, n_{\varepsilon}')$. Combining (1) and (2), we have $\exists n_{\varepsilon}'' \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, $n \geq n_{\varepsilon}'' \Rightarrow v_n < \frac{l_1 + l_2}{2} < u_n$. Therefore, $v_n < u_n$, which is absurd because $u_n < v_n$ for all $n \in \mathbb{N}$. Alternatively, we can view this property as a direct consequence of the first one, where we simply set $w_n = v_n - u_n$. Since $w_n > 0$ for all $n \in \mathbb{N}$, we have $\lim_{n \to +\infty} w_n \geq 0$, implying $\lim_{n\to+\infty} (v_n - u_n) \ge 0$, which further leads to $\lim_{n \to +\infty} v_n > \lim_{n \to +\infty} u_n$

Theorem: Any increasing (resp. decreasing) and bounded above (resp. bounded below) sequence converges to its supremum (resp. infimum).

Proof: Let $(u_n)_{n \in \mathbb{N}}$ be an increasing and bounded above sequence. Then, for all $n \in \mathbb{N}$, $u_n \leq u_{n+1}$, and there exists $M \in \mathbb{R}$ such that $u_n \leq M$. Let $E = \{u_n, n \in \mathbb{N}\}$ and $u = \sup(E)$. According to the characterization of the supremum, we have, for every $\varepsilon > 0$, there exists $p \in \mathbb{N}$ such that $u - \varepsilon < u_p$. Since (u_n) is increasing, for all $n \in \mathbb{N}$ such that $n \geq p$, we have $u_p \leq u_n$. Now, since $u_n \leq u$, we get $u - \varepsilon < u_p \leq u_n \leq u < u + \varepsilon$. Hence, for every $\varepsilon > 0$, there exists $p \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ such that $n \geq p$, we have $u_p \leq u_n \leq u_n$ **Theorem:** Let $(u_n)_{n \in \mathbb{N}}$, $(v_n)_{n \in \mathbb{N}}$, and $(w_n)_{n \in \mathbb{N}}$ be three real sequences such that for all $n \ge n_0$, $u_n \le v_n < w_n$, and $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = I$, then $\lim_{n \to +\infty} v_n = I$. **Proof:** Let $\varepsilon > 0$. There exists $n_1 \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ such that $n \ge n_1$, we have $|u_n - l| < \varepsilon$ which implies $l - \varepsilon < u_n < l + \varepsilon$. Similarly, there exists $n_2 \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ such that $n \ge n_2$, we have $|w_n - l| < \varepsilon$ which implies $l - \varepsilon < w_n < l + \varepsilon$. Let $n_3 = \max(n_0, n_1, n_2)$. Then, for all $n \in \mathbb{N}$ such that $n \ge n_3$, we have $1 - \varepsilon < u_n < v_n < w_n < l + \varepsilon$, which leads to $1 - \varepsilon < v_n < 1 + \varepsilon$ or $|v_n - 1| < \varepsilon$. Therefore, for every $\varepsilon > 0$, there exists $n_3 \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ such that $n > n_3$, we have $|v_n - l| < \varepsilon$, which concludes that $\lim_{n \to +\infty} v_n = l$.

Theorem: Let $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ be two real sequences such that $\lim_{n \to +\infty} u_n = 0$ and $(v_n)_{n \in \mathbb{N}}$ is bounded. Then $\lim_{n \to +\infty} u_n \cdot v_n = 0$. **Proof:** Since $(v_n)_{n \in \mathbb{N}}$ is bounded, there exists M > 0 such that $|v_n| \leq M$ for all $n \in \mathbb{N}$. Also, $\lim_{n \to +\infty} u_n = 0$ implies that for every $\varepsilon > 0$, there exists $n_{\varepsilon} \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ such that $n \geq n_{\varepsilon}$, we have $|u_n| < \frac{\varepsilon}{M}$. This leads to $|u_n \cdot v_n| = |u_n| \cdot |v_n| < \frac{\varepsilon}{M} \cdot M = \varepsilon$. Thus, for every $\varepsilon > 0$, there exists $n_{\varepsilon} \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ such that $n \geq n_{\varepsilon}$, we have $|u_n| < \varepsilon$, which means $\lim_{n \to +\infty} u_n \cdot v_n = 0$.

Theorem (Bolzano-Weierstrass): Every bounded real sequence $(u_n)_{n \in \mathbb{N}}$ has a convergent subsequence.

Definition: Let $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ be two real sequences, such that $(u_n)_{n \in \mathbb{N}}$ is increasing and $(v_n)_{n \in \mathbb{N}}$ is decreasing. The sequences $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ are called **adjacent** if $\lim_{n \to +\infty} (u_n - v_n) = 0$.

Theorem: Two adjacent real sequences converge to the same limit. **Example:** The sequences $(u_n)_{n \in \mathbb{N}^*}$ and $(v_n)_{n \in \mathbb{N}^*}$ defined by $u_n = \sum_{k=1}^n \frac{1}{k!}$ and $v_n = u_n + \frac{1}{n!}$ respectively, converge to the same limit since they are adjacent. Indeed, $(u_n)_{n \in \mathbb{N}^*}$ is increasing, $(v_n)_{n \in \mathbb{N}^*}$ is decreasing, and we have $\lim_{n \to +\infty} (v_n - u_n) = \lim_{n \to +\infty} \frac{1}{n!} = 0.$

Cauchy's Convergence Criterion

Theorem: Let $(u_n)_{n \in \mathbb{N}}$ be a convergent sequence. Then, $(u_n)_{n \in \mathbb{N}}$ possesses the following property known as the Cauchy criterion. For any $\varepsilon > 0$, there exists an integer N such that for every pair of integers p and q greater than N, we have $|u_p - u_q| < \varepsilon$.

Figure:

proof: Let / be the limit of the sequence. We have

$$|u_p - u_q| = |u_p - l + l - u_q| \le |u_p - l| + |l - u_q|$$

The sequence $(u_n)_{n\in\mathbb{N}}$ converges to *I*. Therefore, by definition, for any $\varepsilon > 0$, we can associate an integer *N* such that for all p > N, we have $|u_p - I| < \frac{\varepsilon}{2}$, and for all integer q > N, we have $|u_q - I| < \frac{\varepsilon}{2}$. For any pair of integers *p* and *q* greater than *N*,

$$|u_p-u_q|<rac{arepsilon}{2}+rac{arepsilon}{2}=arepsilon.$$

This brings us to the following definition:

Definition: We say that a sequence $(u_n)_{n \in \mathbb{N}}$ is a Cauchy sequence if it possesses the following property, known as the Cauchy criterion: For any $\varepsilon > 0$, there exists a natural number N such that for any pair of integers p and q greater than N, we have

$$|u_p - u_q| < \varepsilon$$

or, in short,

 $\forall \varepsilon > 0, \exists N, \forall p, \forall q, (p, q > N \Rightarrow |u_p - u_q| < \varepsilon)$

Example: Show that $(u_n)_{n \in \mathbb{N}}$ is a Cauchy sequence where $u_n = \frac{1}{n}$. We have $|u_p - u_q| = |\frac{1}{p} - \frac{1}{q}| \le |\frac{1}{p}| + |-\frac{1}{q}|$. Let us take

$$\begin{cases} q > N \\ p > N \end{cases} \implies \begin{cases} \frac{1}{q} < \frac{1}{N} \\ \frac{1}{p} < \frac{1}{N} \end{cases}$$

Thus, $|u_p - u_q| \le \frac{1}{q} + \frac{1}{p} < \frac{1}{N} + \frac{1}{N}$. So that $|u_p - u_q| < \varepsilon$, it suffices that $\frac{2}{N} < \varepsilon$. And so it suffices to take:

$$N = \left[\frac{2}{\varepsilon}\right] + 1$$

Definition

Let $f : D \subset \mathbb{R} \to \mathbb{R}$ be a function. We call a recursive sequence a sequence (u_n) for $n \in \mathbb{N}$ defined by $u_0 \in D$ and the relation

 $\forall n \in \mathbb{N} : u_{n+1} = f(u_n).$

In the study of recursive sequences, we always assume that $f(D) \subseteq D$. **Example:** Let $u_n = 2u_{n-1} + 1$ and $u_0 = 1$ we can compute the next terms:

$$u_1 = 2 \cdot 1 + 1 = 3$$

 $u_2 = 2 \cdot 3 + 1 = 7$

Remarks:

- If the function f is increasing, then studying the monotony of (u_n)_{n∈ℕ} is given by examining the sign of the difference f(u₀) - u₀.
 - If $f(u_0) u_0 > 0$, then the sequence $(u_n)_{n \in \mathbb{N}}$ is increasing.
 - If $f(u_0) u_0 < 0$, then the sequence $(u_n)_{n \in \mathbb{N}}$ is decreasing.
- If the function f is monotonic and continuous on D, and the sequence (u_n)_{n∈ℕ} converges to a limit l ∈ D, then its limit satisfies the equation f(l) = l.

Computation of Limits in 'Python'

In Python, you can; for example , use the 'sympy' library to perform the limit as $n \to \infty$ of the sequence defined by $u_n = f(n)$ is determined by the commands:

This code uses 'sympy' to define a symbolic variable 'n' and then uses 'sp.limit' to calculate the limit of the sequence (u_n) where: $u_n = \frac{3n-1}{4n+5}$. The function 'sp.oo' represents infinity in sympy. Using 'print(...)', the result will be:

3/4

If one takes $u_n = n$, then he can write the code:

and find the result (infinity):

(ロ) (部) (言) (言) (言) (の)

Thanks

