Exercise series no. 2

Exercise 1

- 1. What are the ranges of 8-bit and 16-bit signed integers, in Signed Magnitude, One's Complement, and Two's Complement representations?
- 2. How many bytes are needed at a minimum to encode the value -512 with Signed Magnitude representation?
- 3. Consider an 8-bit representation of signed integers. Fill in the empty boxes in the following table :

Decimal	Sign-Magnitude	1's Complement	2's Complement
+27			
-45			
-128			
	11110101		
	01110101		
		10101001	
		00101001	
			11110010
			01110010

Exercise 2

- 1. What is the 16-bit sign-magnitude representation of the 8-bit sign-magnitude 10000111?
- 2. What is the decimal (base 10) value of $(C0)_{16}$ when read as:
 - a. An unsigned integer.
 - b. A signed integer.
- 3. Convert the following 16-bit two's complement numbers in hexadecimal representation to decimal : 8000_{16} ; $00FF_{16}$

Exercise 3

Perform the following operations in binary arithmetic using 8-bit binary 2's complement representation. For each operation, indicate whether or not overflow has occurred.

a. $(107)_{10} - (67)_{10}$ b. $(-106)_{10} - (5)_{10}$ c. $(111)_{10} + (25)_{10}$ d. $(-126)_{10} - (85)_{10}$

Exercise 4

1. Express the following decimal numbers in IEEE 754 single-precision floating-point format. Express your answer in hexadecimal.

a. $(+45)_{10}$ b. $(+13.5)_{10}$ c. $(-160.75)_{10}$ d. $(-32.625)_{10}$

2. Convert the following hexadecimal numbers from single-precision floating-point format to decimal:

a.
$$(17BE0000)_{16}$$
 b. $(C3F00000)_{16}$

Exercise 5

- 1. Convert the following numbers to the corresponding number base:
 - a. $(87)_{10} = (?)_2 = (?)_{BCD} = (?)_{GR} = (?)_{XS3}$
 - b. $(153)_{10} = (?)_2 = (?)_{BCD} = (?)_{GR} = (?)_{XS3}$
 - c. $(637)_8 = (?)_2 = (?)_{BCD} = (?)_{GR} = (?)_{XS3}$
 - d. $(BC8)_{16} = (?)_2 = (?)_{BCD} = (?)_{GR} = (?)_{XS3}$
 - e. $(1101001)_{BCD} = (?)_2 = (?)_{GR} = (?)_{XS3}$
- f. $(100011000)_{BCD} = (?)_2 = (?)_{GR} = (?)_{XS3}$
- g. $(1011001011)_{GR} = (?)_2 = (?)_{BCD} = (?)_{XS3}$
- h. $(100010010011)_{GR} = (?)_2 = (?)_{BCD} = (?)_{XS3}$
- i. $(11001010)_{XS3} = (?)_2 = (?)_{GR} = (?)_{BCD}$
- j. $(110001101011)_{XS3} = (?)_2 = (?)_{GR} = (?)_{BCD}$
- 2. What is the reflected binary representation of the decimal numbers from 13 to 25?

Additional exercises:

Exercise 6

- 1. Encode on 4 bits the integers +7, +2, 0, -2, -7 and -8, +8 with the following representations:
 - a. Signed Magnitude.
 - b. One's Complement.
 - c. Tow's Complement.
- 2. Indicate the value coded by 1101100101110101 which represents an integer signed in 2's Complement on 16 bits.
 - Same question with 0001000011101101.
- 3. Perform (on 6 bits) in 1's Complement then in 2's Complement the following operations:

Exercise 7

Consider a 32-bit machine whose octal content is equal to 37724000000(8)

What is the decimal equivalent of this content if we consider that it represents:

- 1. An integer value in **Signed Magnitude**.
- 2. An integer value in **One's Complement**.
- 3. An integer value in **Tow's Complement**.
- 4. A real value in simple precision floating point (standard IEEE 754) notation.

Exercise 8

Express in hexadecimal, the **simple precision floating point** (**IEEE 754**) representation of the following numbers:

+64.5₍₁₀₎ +8.375₍₁₀₎ -2.625₍₁₀₎ $\times 2^{-129}$ +5₍₁₀₎ $\times 2^{-128}$

Exercise 9

Consider the simple precision floating point (32 bits) of the IEEE 754 standard notation.

- 1. What are the largest and the smallest positive numbers in normalized form representable in the form $\pm a \times 2^{b}$ (a and b are decimal).
- 2. Put in the form $\pm \mathbf{a} \times \mathbf{2}^{\mathbf{b}}$ the two following hexadecimal contents: X = AE800000 , Y = AF600000
- 3. Calculate Z = X Y
- 4. Deduce the representation of Z