
Chapter 03

Representation

of numbers.

Chapter 03

• Encoding information establishing a correspondence
between its external representation and its internal
representation in the machine, which is a sequence of
bits.

• The representation (encoding) of numbers is necessary
in order to store and manipulate them by a computer.

• The main problem is the limitation of the coding size: a
mathematical number can take arbitrarily large values,
while encoding in the machine must be done with a
fixed number of bits.

Coding of natural numbers

• Natural numbers (non-negative integers) are encoded
using a fixed number of bytes (1 byte = 8 bits).
Commonly encountered encodings include 1, 2, 4
bytes, and more rarely, 8 bytes (64 bits).

• An n-bit encoding allows the representation of all
natural numbers within the range:

• For example, with one byte (8 bits), you can represent
(encode) numbers belonging to the interval:

Coding of negative integers

• The plus (+) and minus (-) signs are not recognized
by a computer, which only understands two states: 0
and 1.

• Therefore, they are represented by a bit that occupies
the leftmost position of the considered number. This
bit is called the sign bit. So, by convention, we
represent the plus sign (+) as 0 and the minus sign (-)
as 1.

• Negative numbers are represented in a computer
using one of three methods: Sign and Absolute Value,
One's Complement, or Two's Complement.

Coding of signed integers

• The representation of signed integers presents
problems, especially in terms of sign representation.
There are several ways to encode signed numbers:
 Sign and absolute value coding
 Restricted complement coding (1's complement)
 True complement (2's complement)

Sign and absolute value coding

• With n bits, the nth bit is reserved for sign, and the
remaining n-1 bits are used for representing the
absolute value of the number to be encoded.

• An n-bit encoding allows for the coding of all
integers within the range:

Sign and absolute value coding

Sign and absolute value coding

Sign and absolute value coding

Sign and absolute value coding

Sign and absolute value coding

Sign and absolute value coding

Sign + absolute value coding

• Advantages:
Easy to interpret
• Disadvantages:
2 representations
for zero
(+0 and -0) and
Problem adding
two numbers
of opposite signs

Sign + Absolute Value Encoding

• Question:

Can the number -8 be represented using 4 bits?

• Answer:

It is impossible to represent the number -8 with 4 bits
because its absolute value |-8(10)|, which is equal to
1000(2), already requires 4 bits. Therefore, we would
need a minimum of 5 bits to represent it, including the
sign bit.

Sign + Absolute Value Encoding

Coding in restricted complement (CR)
or 1's complement (C to 1)

One obtains the one's complement of a binary number
by flipping (changing 1 to 0 and 0 to 1) each of its bits.

Positive numbers are encoded as in Sign and Absolute
Value (SAV) encoding.

Negative numbers are derived from positive numbers
through bitwise complementation, meaning:

(-N) = One's Complement (N) (assuming N is a positive
number). An n-bit encoding allows for the coding of any
integer within the range:

• Exemple :

• To encode +15 and -15 using one's complement encoding
on 8 bits:

• Inconvenience: Two representations for zero

Coding in restricted complement (CR)
or 1's complement (C to 1)

• Exemple :

• To encode +15 and -15 using one's complement encoding
on 8 bits:

• Inconvenience: Two representations for zero

Coding in restricted complement (CR)
or 1's complement (C to 1)

• Exemple :

• To encode +15 and -15 using one's complement encoding
on 8 bits:

• Inconvenience: Two representations for zero

Coding in restricted complement (CR)
or 1's complement (C to 1)

• One's Complement Convention

• Range of representable numbers in one's complement
on 8 bits

• This method is now obsolete

Coding in restricted complement (CR)
or 1's complement (C to 1)

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

To obtain the two's complement of an integer, simply add
1 to its one's complement:
CV(N) = CR(N) + 1, where N is any integer.
In two's complement encoding:
A positive number is represented in the same way as in
the sign and absolute value encoding.
A negative number is represented by the two's
complement of its opposite (which is, of course, positive).
An n-bit encoding allows for the coding of any integer
within the range:

• Exemple :

Encode +15 and -15 on 8 bits using CV coding,

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

• Exemple :

Encode +15 and -15 on 8 bits using CV coding,

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

• Exemple :

Encode +15 and -15 on 8 bits using CV coding,

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

• Exemple :

Encode +15 and -15 on 8 bits using CV coding,

• Advantage: A single encoding for 0 and no issues
with performing the addition operation.

• Disadvantage: Difficult to interpret.

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

•Note: Alternatively, to find the two's complement of a
number, you need to iterate through the bits of that
number starting from the least significant bit and
preserve all the bits before the first '1' ,while inverting
the remaining bits that follow.

Exemple:

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

•Note: Alternatively, to find the two's complement of a
number, you need to iterate through the bits of that
number starting from the least significant bit and
preserve all the bits before the first '1' ,while inverting
the remaining bits that follow.

Exemple:

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

•Note: Alternatively, to find the two's complement of a
number, you need to iterate through the bits of that
number starting from the least significant bit and
preserve all the bits before the first '1' ,while inverting
the remaining bits that follow.

Exemple:

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

•Note: Alternatively, to find the two's complement of a
number, you need to iterate through the bits of that
number starting from the least significant bit and
preserve all the bits before the first '1' ,while inverting
the remaining bits that follow.

Exemple:

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

•Note: Alternatively, to find the two's complement of a
number, you need to iterate through the bits of that
number starting from the least significant bit and
preserve all the bits before the first '1' ,while inverting
the remaining bits that follow.

Exemple:

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

•Note: Alternatively, to find the two's complement of a
number, you need to iterate through the bits of that
number starting from the least significant bit and
preserve all the bits before the first '1' ,while inverting
the remaining bits that follow.

Exemple:

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

•Note: Alternatively, to find the two's complement of a
number, you need to iterate through the bits of that
number starting from the least significant bit and
preserve all the bits before the first '1' ,while inverting
the remaining bits that follow.

Exemple:

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

•Note: Alternatively, to find the two's complement of a
number, you need to iterate through the bits of that
number starting from the least significant bit and
preserve all the bits before the first '1' ,while inverting
the remaining bits that follow.

Exemple:

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

•Note: Alternatively, to find the two's complement of a
number, you need to iterate through the bits of that
number starting from the least significant bit and
preserve all the bits before the first '1' ,while inverting
the remaining bits that follow.

Exemple:

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

• Two's Complement Convention Range of
representable numbers in two's complement on 8 bits

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

Subtraction using the complement
method

A/ Restricted Complement RC or (C-to-1)
For a machine operating with restricted complement,
subtraction is achieved by adding the restricted
complement of the number to be subtracted to the number
it needs to be subtracted from, along with the carry
propagation (i.e., addition of the carry).
If there is no carry, it signifies that the number is negative.
It is in the complemented form (restricted complement).
To obtain the desired value, one simply needs to find the
RC (restricted complement) of this result.

• Exemple 1 :

Perform the following operation using the RC (Restricted
Complement) technique on 8 bits : (63)10- (28)10.

• (63)10 = (00111111)2

• (28)10 = (00011100)2.

• CR(28) = CR(00011100) = (11100011)CR.

Then, perform the addition of : (00111111)2 + (11100011)CR

In this example, is there a carry?

Well :

Subtraction using the complement
method

• Exemple 1 :

Subtraction using the complement
method

• Exemple 1 :

Subtraction using the complement
method

• Exemple 1 :

Subtraction using the complement
method

• Exemple 1 :

Subtraction using the complement
method

• Exemple 2 :

Perform the following operation using the RC (Restricted
Complement) technique on 8 bits:

• (28)10 - (63)10

• (63)10 = (00111111)2 et (28)10 = (00011100)2.

• CR(63) = CR(00111111) = (11000000)CR.

Subtraction using the complement
method

• Exemple 2

Subtraction using the complement
method

• Exemple 2

Subtraction using the complement
method

• Exemple 2

Subtraction using the complement
method

There is no carry

• Exemple 2

• There is no carry, the result is negative, so we calculate its RC
(Restricted Complement):

CR(11011100) = (00100011)2 = (35)10

confirming the equality: (28)10 - (63)10=(-35)10.

Subtraction using the complement
method

B/ True Complement: The principle is the same as for
the RC, except this time we ignore the carry. Instead of
working with RC, we determine True Complements.

Example 1: Perform the following operation using the
TC (True Complement) technique on 8 bits:

• (63)10-(28)10 = (63)10 + CV(28)

• (63)10 = (00111111)2

• (28)10 = (00011100)2.

• CV(28) = CR(00011100) + 1 = (11100100)cv.

Subtraction using the complement
method

• In this example, we obtain a result:

Subtraction using the complement
method

• In this example, we obtain a result:
• (63)10-(28)10 = (+35)10.

Subtraction using the complement
method

• In this example, there is a carry, so it needs to be
ignored. We obtain a positive result:
(63)10-(28)10 = (+35)10.

Subtraction using the complement
method

There is a carry

• Exemple 2 :

Perform the following operation using the TC (True
Complement) technique on 8 bits. : (28)10- (63)10

• (28)10- (63)10 = (28)10 + CV(63)

• (63)10 = (00111111)2

• (28)10 = (00011100)2

• CV(63) = CR(0 0111111) + 1

= (1 1000001)CV.

Subtraction using the complement
method

• In this example, there is no carry; the result is
negative, so we calculate its TC (True Complement):

• CV(11011101) = CR(11011101) +1 = 00100010 + 1 =
00100011. On obtient au final : (28)10-(63)10 = (-35)10.

Subtraction using the complement
method

• In this example, there is no carry; the result is
negative, so we calculate its TC (True Complement):

• CV(11011101) = CR(11011101) +1 = 00100010 + 1 =
00100011. On obtient au final : (28)10-(63)10 = (-35)10.

Subtraction using the complement
method

• Reminder:

• In two's complement (true complement) on n bits, the
numbers are between

• Addition of two positive numbers:

• When adding two positive numbers, it is possible to
obtain a negative result (the sign bit of the result is 1).
This is because the result does not fall within the
authorized range with the given number of bits.

Problems related to the length of numbers

• Example:
• Perform the following operation using the Overflow

technique on 8 bits: (+49)10 + (88)10 In this example,
we added two positive numbers, both fitting into 8
bits.

• Unfortunately, we obtained a result that is outside the
range of values allowed for coding in 8 bits.

• with n = 8. Indeed, the result of 137 (49+88=137) is
outside this interval.

Problems related to the length of numbers

Problems related to the length of numbers

Problems related to the length of numbers

• Addition of two negative numbers:

• When adding two negative numbers represented by
their Two's Complement (sign bit as 1), it is possible
to obtain a positive result (the sign bit of the result is
0).

• Indeed, there is always a carry because the most
significant bits of the numbers being added are 1.
Example 1: Perform the following operation using the
Overflow technique on 8 bits: (-32)10 + (-31)10

Problems related to the length of numbers

• (-32)10 + (-31)10

Problems related to the length of numbers

• (-32)10 + (-31)10

Problems related to the length of numbers

• (-32)10 + (-31)10

Problems related to the length of numbers

• In this example, we added two negative numbers
(notice the sign bit is at 1) and obtained a negative
number (observe the sign bit at 1).

• Although we obtained a carry, our result is correct;
we simply need to ignore this carry (as we are using
two's complement or true complement coding here).

Problems related to the length of numbers

• Example 2: Perform the following operation using
Overflow technique on 8 bits: (-32)10 + (-128)10

• By ignoring the carry, we obtain a positive result
(sign bit is 0); therefore, we deduce there is overflow
or capacity exceeding.

• In decimal: (-32)10 + (-127)10 = (-159)10. -159 is
not within the range [-128 and +127].

Problems related to the length of numbers

Problems related to the length of numbers

• Overflow Indicator:

• Computers use an overflow indicator, which is set to
1 if the sign bit of the result is 0 while the two
numbers being added are negative, or when the sign
bit of the result is 1 while the two numbers being
added are positive.

Problems related to the length of numbers

