Chapter 03

Representation
of numbers.

Chapter 03

* Encoding information => establishing a correspondence
between 1its external representation and 1its internal
representation in the machine, which is a sequence of
bits.

* The representation (encoding) of numbers 1S necessary
in order to store and manipulate them by a computer.

* The main problem is the limitation of the coding size: a
mathematical number can take arbitrarily large values,
while encoding in the machine must be done with a
fixed number of bits.

Coding of natural numbers

* Natural numbers (non-negative integers) are encoded
using a fixed number of bytes (1 byte = 8 bits).
Commonly encountered encodings include 1, 2, 4
bytes, and more rarely, 8 bytes (64 bits).

* An n-bit encoding allows the representatior}I of all
natural numbers within the range: 0 and 2-1

* For example, with one byte (8 bits), you can represent
(encode) numbers belonging to the interval:

[0, 2°-1] = [0,255]

Coding of negative integers

* The plus (+) and minus (-) signs are not recognized
by a computer, which only understands two states: 0
and 1.

* Therefore, they are represented by a bit that occupies
the leftmost position of the considered number. This
bit 1s called the sign bit. So, by convention, we
represent the plus sign (+) as 0 and the minus sign (-)
as 1.

* Negative numbers are represented in a computer
using one of three methods: Sign and Absolute Value,
One's Complement, or Two's Complement.

Coding of signed integers

 The representation of signed integers presents
problems, especially in terms of sign representation.

There are several ways to encode signed numbers:

 Sign and absolute value coding

 Restricted complement coding (1's complement)

- True complement (2's complement)

Convention: Regardless of the encoding used, the
most significant bit is reserved for sign

representation: a negative number has a sign bit of 1,
and a positive number has a sign bit of (.

Sign and absolute value coding

* With n bits, the nth bit 1s reserved for sign, and the
remaining n-1 bits are used for representing the
absolute value of the number to be encoded.

* An n-bit encoding allows for the coding of all
integers within the range:

[-(2"-1), + (2"-1)]

1111 | 1110 | 1101 | 1100 | 1011 | 1010 | 1001 | 1000
-7 | -6 -5 -4 -3 - 2 o ! -0

0000 | 0001 | 0010 | 0O11 | 0100 | 0101 | 0110 | 0111
+0 +1 + 2 + 3 +4 +5 +6 +7

Sign and absolute value coding

n =4 bits n = 8 bits

range of
converted
values

Status of the
value zero

Exemples |

Sign and absolute value coding

n =4 bits n = 8bhits
range of
converted | [-7,+7] [-127,+127]
values

Status of the
value zero

Exemples

Sign and absolute value coding

n = 4 bits n = 8 bits
range of
converted | [-7,+7] [-127,+127]
values

Status of the | The value zero is | The value zero is
value zero 0000 = 1000 00000000 = 1000000

Exemples

Sign and absolute value coding

n = 4 bits n = 8 bits
range of
converted | [-7,+7] [-127,+127]
values

Status of the | The value zero is | The value zero is
value zero 0000 = 1000 00000000 = 1000000

+(3)10 = (0 011)sya +(3)10 = (0 0000011)sya

Exemples

Sign and absolute value coding

n = 4 bits n = 8 bits
range of
converted | [-7,+7] [-127,+127]
values

Status of the | The value zero is | The value zero is
value zero 0000 = 1000 00000000 = 1000000

+(3)10=(0011)sva | #(3)10=(0 0000011)sy4

'(3)113 = (1 Ull)swn '(3)113 = (1 0000011)5\&

Exemples

Sign and absolute value coding

n = 4 bits n = 8 bits
range of
converted | [-7,+7] [-127,+127]
values

Status of the | The value zero is | The value zero is
value zero 0000 = 1000 00000000 = 1000000

+(3)10=(0011)sva | #(3)10=(0 0000011)sy4

'(3)113 = (1 Ull)swn '(3)113 = (1 0000011)5\&

Exemples
+(15)10 et -(15)10

Sign + absolute value coding

n = 4 bits n = 8 bits
range of
converted | [-7,+7] [-127,+127]
values

Status of the | The value zero is | The value zero is
value zero 0000 = 1000 00000000 = 1000000

+(3)10=(0011)sva | #(3)10=(0 0000011)sy4

'(3)1u = (1 Ull)m '(3)113 = (1 0000011)5\&

Exemples
+(15)50 et -(15)0 +(15)10=(00001111)sya

impossible
to represent -(15)30=(1 0001111)y,
Y

Sign + Absolute Value Encoding

n = 16 bits

* Advantages:
Easy to interpret

[-32767,+ 32767]

* Disadvantages: La valeur zéro est

. = 0000 0000 0000 0000
2 representations - 1000 0000 0000 0000
for zero +(3)10 = (0 000 0000 0000 0011)sy
(+0 and -0) and

. (3)10 = (1 000 0000 0000 0011)ys
Problem adding

+(15),4 = (0 000 0000 0000 1111
two numbers (15)10 = Jsva

of Opposite SigIlS -(15)40 = (1 000 0000 0000 1111)cya

Sign + Absolute Value Encoding

e (Question:

Can the number -8 be represented using 4 bits?

e Answer:

It 1s impossible to represent the number -8 with 4 bits
because 1ts absolute value |-8ao)|, which 1s equal to
1000¢), already requires 4 bits. Therefore, we would
need a minimum of 5 bits to represent 1t, including the
sign bit.

Coding 1n restricted complement (CR)
or 1's complement (C to 1)

One obtains the one's complement of a binary number
by flipping (changing 1 to 0 and 0 to 1) each of its bats.

Positive numbers are encoded as in Sign and Absolute
Value (SAV) encoding.

Negative numbers are derived from positive numbers
through bitwise complementation, meaning:

(-N) = One's Complement (N) (assuming N 1s a positive
number). An n-bit encoding allows for the coding of any
integer within the range: [-(2"-1) + (2"-1)]

Coding 1n restricted complement (CR)
or 1's complement (C to 1)

 Exemple :

* To encode +15 and -15 using one's complement encoding
on 8 bits:

(+15)40 =
('15);: -

* Inconvenience: Two representations for zero

Coding 1n restricted complement (CR)
or 1's complement (C to 1)

 Exemple :

* To encode +15 and -15 using one's complement encoding
on 8 bits:

(+15)10 = (00001111);
(-15)50 = CR(00001111) =

* Inconvenience: Two representations for zero

Coding 1n restricted complement (CR)
or 1's complement (C to 1)

 Exemple :

* To encode +15 and -15 using one's complement encoding
on 8 bits:

(+15)4, = (00001111),
(-15)45 = CR{00001111) = {11110000)c;

|
-

* Inconvenience: Two representations for zero

Coding 1n restricted complement (CR)
or 1's complement (C to 1)

* One's Complement Convention

* Range of representable numbers in one's complement
on 8 bits

 This method 1s now obsolete

10000000 L1l L1l | 00000000 01111111
-127,, -1,51 949 127,

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

To obtain the two's complement of an integer, simply add
1 to 1ts one's complement:

CV(N) =CR(N) + 1, where N 1s any 1nteger.
In two's complement encoding:

A positive number 1s represented in the same way as in
the sign and absolute value encoding.

A negative number 1s represented by the two's
complement of 1ts opposite (which 1s, of course, positive).

An n-bit encoding allows for the coding of any integer
within the range: [_zﬂ-l + (2”-1_1)]

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

 Exemple:
Encode +15 and -15 on 8 bits using CV coding,

(+15)10 =
(-13)10 =

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

 Exemple:
Encode +15 and -15 on 8 bits using CV coding,

(+15),, = (00001111)
[-13)10 =

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

 Exemple:
Encode +15 and -15 on 8 bits using CV coding,

(+15)4, = (00001111}
(-15),5 = CR{00001111) +1 =

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

 Exemple:
Encode +15 and -15 on 8 bits using CV coding,

(+15)4, = (00001111}
(-15); = CR(00001111) + 1 = (11110001),

* Advantage: A single encoding for 0 and no 1ssues
with performing the addition operation.

* Disadvantage: Difficult to interpret.

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

*Note: Alternatively, to find the two's complement of a
number, you need to 1terate through the bits of that
number starting from the least significant bit and
preserve all the bits before the first '1' ,while inverting
the remaining bits that follow.

Exemple:

01000101 11010100

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

*Note: Alternatively, to find the two's complement of a
number, you need to 1terate through the bits of that
number starting from the least significant bit and
preserve all the bits before the first '1' ,while inverting
the remaining bits that follow.

Exemple:

01000101 11010100

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

*Note: Alternatively, to find the two's complement of a
number, you need to 1terate through the bits of that
number starting from the least significant bit and
preserve all the bits before the first '1' ,while inverting
the remaining bits that follow.

Exemple:

01000101 11010100

i

00

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

*Note: Alternatively, to find the two's complement of a
number, you need to 1terate through the bits of that
number starting from the least significant bit and
preserve all the bits before the first '1' ,while inverting
the remaining bits that follow.

Exemple:

01000101 11010100

1

100

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

*Note: Alternatively, to find the two's complement of a
number, you need to 1terate through the bits of that
number starting from the least significant bit and
preserve all the bits before the first '1' ,while inverting
the remaining bits that follow.

Exemple:

01000101 11010100

iy

1100

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

*Note: Alternatively, to find the two's complement of a
number, you need to 1terate through the bits of that
number starting from the least significant bit and
preserve all the bits before the first '1' ,while inverting
the remaining bits that follow.

Exemple:

01000101 11010100

aiiy

01100

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

*Note: Alternatively, to find the two's complement of a
number, you need to 1terate through the bits of that
number starting from the least significant bit and
preserve all the bits before the first '1' ,while inverting
the remaining bits that follow.

Exemple:

01000101 11010100

aiey

101100

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

*Note: Alternatively, to find the two's complement of a
number, you need to 1terate through the bits of that
number starting from the least significant bit and
preserve all the bits before the first '1' ,while inverting
the remaining bits that follow.

Exemple:

01000101

o T
s e =
—_ .
L= i
- —
_ W
0 o— 0

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

*Note: Alternatively, to find the two's complement of a
number, you need to 1terate through the bits of that
number starting from the least significant bit and
preserve all the bits before the first '1' ,while inverting
the remaining bits that follow.

Exemple:

o T
s e =
—_ .
L= i
- —
_ W
0 o— 0

Two's Complement Encoding (CV) or
Complement to 2 (C to 2)

* Two's Complement Convention Range of
representable numbers 1n two's complement on 8 bits

10000000 11111111 ;, 00000000 0lllllll

-128 -1 0 12T

10 10 10 10

Subtraction using the complement

method

A/ Restricted Complement RC or (C-to-1)

For a machine o
subtraction 1s ac!

perating with restricted complement,
hieved by adding the restricted

complement of the number to be subtracted to the number
it needs to be subtracted from, along with the carry

propagation (1.€.

, addition of the carry).

If there 1s no carry, 1t signifies that the number 1s negative.
It 1s in the complemented form (restricted complement).

To obtain the desired value, one simply needs to find the
RC (restricted complement) of this result.

Subtraction using the complement
method

* Exemplel :

Perform the following operation using the RC (Restricted
Complement) technique on 8 bits : (63)10- (28)1o.

* (63)10=(00111111)2

* (28)10=(00011100)z2.
 CR(28)=CR(00011100)=(11100011)cr.

Then, perform the addition of : (00111111)2+ (11100011)cr
In this example, 1s there a carry?

Well :

Subtraction using the complement
method

* Exemple 1 :

00111111 < (63):c
+ 11100011 < CR(28)

Subtraction using the complement
method

* Exemple 1 :

00111111 < (63):c
11100011 < CR(28)

* 00100010

Subtraction using the complement
method

* Exemple 1 :

00111111 & (63)sc
+# 11100011 & CR(28)

C
(e =1 00100010

Subtraction using the complement
method

* Exemple 1 :

00111111 & (63)s
+# 11100011 & CR(28)

C
(amf> * 00100010

+ 1
= 00100011 &— final result (+35).s!

Subtraction using the complement
method

* Exemple 2 :

Perform the following operation using the RC (Restricted
Complement) technique on 8 bits:

* (28)10 - (63)10
* (63)10=(00111111)2 et (28)10=(00011100)z2.
* CR(63)=CR(00111111)=(11000000)cr.

Subtraction using the complement
method

* Exemple 2

0 0011100 &(28)4,
11000000 £ CR(63)

Subtraction using the complement
method

* Exemple 2

00011100 <(28)40
11000000 < CR(63)

= 11011100 ¢— Final result (-35) 5.

Subtraction using the complement
method

* Exemple 2

0 0011100 &(28) 10
11000000 &CR(63)

= 11011100 ¢— Final result (-35).o.

Ere 1S NO caD

Subtraction using the complement
method

 Exemple 2

0 0011100 &(28) 10
11000000 &CR(63)

= 11011100 ¢— Final result (-35).o.

* There 1s no carry, the result 1s negative, so we calculate 1ts RC
(Restricted Complement):

CR(11011100) =(00100011)2=(35)10
confirming the equality: (28)10 - (63)10=(-35)10.

Subtraction using the complement
method

B/ True Complement: The principle 1s the same as for
the RC, except this time we 1gnore the carry. Instead of
working with RC, we determine True Complements.

Example 1: Perform the following operation using the
TC (True Complement) technique on 8 bits:

* (63)10-(28)10 = (63)10 + CV(28)

* (63)10=(00111111)2

* (28)10=(00011100)z2.

e CV(28)=CR(00011100)+ 1 =(11100100)ecv.

Subtraction using the complement
method

* In this example, we obtain a result:

00111111 & (63) 40
11100100 & CV(28)

Subtraction using the complement
method

* In this example, we obtain a result:
* (63)10-(28)10 = (+35)10.

00111111 < (63)40
11100100 & Cy(28)

Carry - O = 00100011 & Final result (+35),;

Subtraction using the complement
method

* In this example, there 1s a carry, so it needs to be
1ignored. We obtain a positive result:
(63)10-(28)10 = (+35)10.

00111111 & (63) 10
11100100 & CV(28)

Carry 3 @ = 00100011 & Fnal result (+35);;

There 1s a ca@

Subtraction using the complement
method

* Exemple 2 :

Perform the following operation using the TC (True
Complement) technique on 8 bits. : (28)10- (63)10

(28)10- (63)10 = (28)10 + CV(63)
(63)10=(00111111)2

(28)10= (00011100 5 = 00011100
CV(63)=CR(OOI11111)+1 + 11000001

= (1 1000001)cv. /

Subtraction using the complement

method
0 0011100 & (28)4,
+ 11000001 & CV(B3)

= 11011101

* In this example, there 1s no carry; the result 1s
negative, so we calculate 1ts TC (True Complement):

« CV(11011101)=CR(11011101)+1 =00100010+1 =
00100011. On obtient au final : (28)10-(63)10 = (-35)10.

Subtraction using the complement

method
0 0011100 < (28)40
+ 11000001 & CV(63)
= 11011101 €& Final result (-35);:.

* In this example, there 1s no carry; the result 1s
negative, so we calculate 1ts TC (True Complement):

« CV(11011101)=CR(11011101)+1 =00100010+1 =
00100011. On obtient au final : (28)10-(63)10 = (-35)10.

Problems related to the length of numbers

Reminder:

In two's complement (true complement) on n bits, the
numbers are between -2"" et + (2" -1)

Addition of two positive numbers:

When adding two positive numbers, it 1s possible to
obtain a negative result (the sign bit of the resultis 1).
This 1s because the result does not fall within the
authorized range with the given number of bats.

Problems related to the length of numbers

Example:

Perform the following operation using the Overflow
technique on 8 bits: (+49)10 + (88)10 In this example,
we added two positive numbers, both fitting into 8
bits.

Unfortunately, we obtained a result that 1s outside the
range of values allowed for coding 1n 8 bits.

| 225, + (25 4)] =1-128 % 327]
with n = 8. Indeed, the result of 137 (49+88=137) 1s
outside this interval.

Problems related to the length of numbers

0 0110001 < (+49) 4,
01011000 < (88)40

10001001

+

Problems related to the length of numbers

00110001 < (+49)4,
+ 01011000 & (88) 40

= 001001
- Overflow >

Problems related to the length of numbers

* Addition of two negative numbers:

* When adding two negative numbers represented by
their Two's Complement (sign bit as 1), 1t 1s possible
to obtain a positive result (the sign bit of the result 1s
0).

* Indeed, there 1s always a carry because the most
significant bits of the numbers being added are 1.

Example 1: Perform the following operation using the
Overflow technique on 8 bits: (-32)10 + (-31)10

Problems related to the length of numbers

* (-32)10+ (-31)10

11100000 < (-32)45
11100001 < (-31):;

= ! 11000001

Problems related to the length of numbers

* (-32)10+ (-31)10

11100000 & (-32);
11100001 & (-31):;

11000001

Problems related to the length of numbers

* (-32)10+ (-31)10
11100000 & (-32).c

+ 11100001 <« ('31};:
(Cﬂm l ——

11000001

Result :

CV(11000001)=-(63)10

Problems related to the length of numbers

* In this example, we added two negative numbers
(notice the sign bit 1s at 1) and obtained a negative
number (observe the sign bit at 1).

* Although we obtained a carry, our result is correct;
we simply need to 1gnore this carry (as we are using
two's complement or true complement coding here).

Problems related to the length of numbers

* Example 2: Perform the following operation using
Overflow technique on 8 bits: (-32)10 + (-128)10

* By ignoring the carry, we obtain a positive result
(s1gn bit 1s 0); therefore, we deduce there 1s overflow
or capacity exceeding.

* In decimal: (-32)10 + (-127)10 =(-159)10. -159 1s
not within the range [-128 and +127].

Problems related to the length of numbers

11100000 & (-32),,
10000001 & (-128),,

100001

Owerflow)

Problems related to the length of numbers

 QOverflow Indicator:

* Computers use an overflow indicator, which 1s set to
1 1f the sign bit of the result 1s O while the two
numbers being added are negative, or when the sign
bit of the result is 1 while the two numbers being
added are positive.

