Solutions of tutorial exercises set 1:
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This document is supplemented for the first chapter lecture notes (Analyses 1).

Exercise 01:

A)
1. For all real numbers = and y, we have:
2z) =|(z+y)+ (z—y)| = 22| <[z +y|l+ ]z -y
2yl =l@+y)+ -2 = 2yl <|z+yl+ |z -yl

Therefore,
lz| + [yl < o+ yl+ o — y|, Yo,y € R.

2. Vz,y > 0, we have z + y < x + 2,/xy + y; because 2,/Ty > 0, which leads to z + y < (Vx + \/ﬂ)z
we findy/z +y < x + /7.

3. For all 2,y > 0 such that x = (x —y) + y and (x —y) + y < |z — y| + y, so we have

Vo <y/|r—y|l+y.

Using the result in question 2, we find \/z < \/|z — y| + /¥ , this implies
Vo =y <z -yl (1)
Similarly, we have \/y < /|y — x| + z, and using the question 2, we get \/y < \/|z — y| + /2, which implies:
Vo —y=—ylz—yl (2)
Combining equations (1) and (2), we get —v/|z — y| < \/z—/y < [z—yl, which implies [/z—/y| < \/|z —y|.
B)

1. For any x € R, we have
[z] <z <[z +1,
which implies
[]+m<z+m<[z]+m+1,

for all m € Z. On the other hand,
[x4+m]|<z+m<[zr+m]+1,

since [x 4+ m] is the largest integer less then = 4+ m, we have

[z] +m < [z +m]
Similarly, [« +m] + 1 is the smallest integer greater than or equal to x + m, so

[x+m|+1<[z]+m+1

Combining these, we get
[ +m] <[z]+m

From [z] + m < [x + m] and [z + m| < [z] + m, we conclude [z + m]| = [z] + m.



2. Ifax<y,then [z] <z <y <[y|+1,s0 [z] <y <[y]+1. As[y]is the greatest integer less than or equal to y
and [z] is an integer, we have [z] < [y].

ozl <z<z]+land [y] <y <[yl +1imply [x] +[y] <z+y < [z] + [y] + 2. Since [x + y] is the greatest
integer less than or equal to = + y, we get

[z] + [y] < [z +y). (3)

Also, [x + y] + 1 is the smallest integer greater than x + y, so [z + y] + 1 < [z] + [y] + 2, leading to
[z +y] < [a] + [yl + 1. (4)

From (3) and (4), we find
[2] + [y] < [z +y] < [z] + [y] + 1.

Exercise 02:
A)

1. Let x € Q and y ¢ Q. We assume by contradiction that z = © 4+ y € Q, which implies y = z — z € Q, leading
to a contradiction.

2. Look at the solution for exercise 7 from the solutions of tutorial exercises set 0.
B) We have:
4a —4, ifa>2
22 =2a+2la—2| = a5 ?a_
4, fl1<a<?2

Exercise 03:

1.
A Maj(A) | Min(A) |supA |inf A | maxA | minA
-, o, +00 — 00, —(¢ « - « -«
—Q, o o, +00 — 00, —(v « - 39 -
—o,x a, +00 — 00, —(¢ « - « 39
-, o, +00 — 00, —& e} - 39 39

2. A =[-v/2,v2[, (4th case in the above table).

3. A:{"T_l,whereneN*}. ForallneN*:nZl<:n—120:>%20andOEAhenceminA:ian:O.

(a) Vne N+, =1 <1
(b) Ve >0,3n. e N*:1—e < ==L,

€

supA—1<:>{

Let us discuss these two conditions:

(a) VneN*n—-1<n& 21 <1
(b) Let e >0, 1—e< ™l ol-e<l-loe>laon>!

Then the condition related to n and e, suggesting that n. can be taken as E] + 1.



Exercise 04:

B = {|lz -yl (z,y) € A%}.

1. If A is a bounded subset, then sup A and inf A exist. Let sup A = M and inf A = m. For all (x,y) in A%:
let us take, m < x < M and m <y < M, which leads to — M < —y<-m=-—-(M-m)<z—y<M-m

Slr—yl <M-—m.

Therefore, M — m is an upper bound for B.
2. We have

If sup A = M, then for all £ > 0, there exists z € A such that M — % <z (5)

and
If inf A = m, then for all € > 0, there exists y € A such that y < m + % (6)

Combining (5) and (6), we get:
Ve > 0,3(z,y) € A2 (M —m)—ec<z—y
Since z — y < |z — y|, we have:

Ve > 0,3(z,y) € A%, (M —m) —e < |z —y|
Consequently, sup B =M —m =sup A — inf A.

Exercise 05:

1. (a) Let us show that: sup(AU B) < max(sup A,sup B). We have on one hand:

AcC (AUB)
and
BcC (AUB)

This implies:
sup A < sup(AU B)
and
sup B < sup(AU B)

Therefore,
max(sup A,sup B) < sup(AU B) (7)
On the other hand, if x € AU B, then:
€A
or
reB
This leads to:
x<supA
or
r <supB

So, < max(sup A, sup B), implying that max(sup 4, sup B) is an upper bound for AU B. Since sup(4A U B)
is the smallest upper bound for AU B, we have

sup(A U B) < max(sup A, sup B) (8)



Combining (7) and (8), we establish the equality.

(b) Let us show that: inf(A U B) < min(inf A,inf B). On one hand:

AcC(AUB)
and
BcC (AUB)

This implies:
inf A > inf(AU B)
and
inf B > inf(AU B)

Therefore,
min(inf A, inf B) > inf(AU B) 9)
On the other hand, if x € AU B, then:
reA
or
reDB
This leads to:
z>1inf A
or
x> inf B

So, © > min(inf A4, inf B), implying that min(inf A, inf B) is a lower bound for AU B. Since inf(A U B) is the
largest lower bound for AU B, we have

inf(A U B) > min(inf A, inf B) (10)

Combining (9) and (10), we establish the equality.

. If AN B # 0, then, let us prove that:
(a)

?
sup(A N B) < min(sup A, sup B)

(AnB)C A
and
(AnB)CB

This implies:
sup(AN B) < sup A
and
sup(AN B) <sup B

Hence, sup(A N B) < min(sup A, sup B).

(b) ?
inf(A N B) > max(inf A, inf B)
Let us take
(ANB)C A
and
(ANnB)C B



This implies:
inf(ANB) >inf A
and
inf(ANB) > inf B

Thus, inf(A N B) > max(inf A, inf B).

3. (a) Let us show that:
sup(A4 + B) < sup A + sup B

Given:
V. A:x < Mj... (%1
supA =My = vEAiw S My (xl)
Ve>0,3x € A: My — § <x..(x2)
y <
SupB = My —> Vye B:y< Mp...(x3)
Ve>0,3y € B: Mp —§ <y...(x4)
Then:

(x1) + (*3) = V2 € A+ B:2< My + Mp
(#2)+ (x4) = Ve >0,32€ A+ B: (Ma+Mp)—e<z

Therefore, sup(A + B) = supA + supB.
(b) Now, let us show that:

?

inf(A+ B) =inf A+inf B

Given:
A: < z... 1
A =y, — Vo € ma < x...(xx1)
Ve>0,dz€A:x<ma+5...(x%2)
B: <uy...
infB=mp = Vy € mp < y.. (5 3)
Ve>0,dyc B:y<mp+ 5...(xx4)
Then:

(x%1)+ (x%3) = Vz€ A+B:ma+mp <z
(x%2)+ (x%x4) = Ve >0,Iz€ A+ B:z2<(ma+mp)+¢
Therefore, inf(A + B) = infA + infB.
4. (a) Let us show that:
.

sup(—A) = —inf A

e VreA:zx>infA — —x < —inf A. Hence, —inf A is an upper bound for —A. Since sup(—A) is the
smallest upper bound for — A, we have

sup(—A) < —inf A (11)

o V(—z) € (—A) : —z <sup(—A) = x > —sup(—A). Hence, —sup(—A) is a lower bound for A. Since
inf A is the largest lower bound for A, we have

inf A > —sup(—A) (12)

From (11) and (12), we establish the equality.
(b) Let us show that:

inf(—A) L_ sup A
eVre A:x <supA = —x > —supA. Hence, —sup A is a lower bound for —A. Since inf(—A)is the
largest lower bound for — A, we have
inf(-A) > —sup 4 (13)



o V(—z) € (—A) : —x > inf(—A) <= x < —inf(—A). Hence, —inf A is an upper bound for A. Since
sup A is the smallest upper bound for A, we have sup A < —inf(—A), which leads

—sup A > inf(—A) (14)

From (13) and (14), we establish the equality.

Exercise 06:

1 A={&H nen}

e Let us show that: inf A 2. We have

3n+1 S
2n+1 —

So, 1 is a lower bound for A. Note: 1 € A for n = 0. Thus, min A =inf A = 1.

VneN:3n>2n < 3n+1>2n+1 <

e sup A ~ % We have

3 1 3

VReN:2<3 = Gn+2<6n+3 < o<

2n+1 2
Therefore, % is an upper bound for A; but 2 5 ¢ A. The verification of the supremum characterization
leads to: For any € > 0, there exists (?) n. € N such that 3 —e < ;Zsﬁ We have: 5§ —¢ < ;Z ﬁ, which

implies (2 —&)(2n. +1) < (3n. +1) = (3 —2¢)(2n. + 1) < (6ne + 2), then (6n8 +3 —4en, — 2¢) <
(6ne +2) = 1< 2e(2n. +1). 1-2¢
Choose n. = [12525] + 1. Thus, sup A = %, but % ¢ A, so max A does not exist.

2. B={l+ L neN)

n27

e sup B 2 9. We have Vn € N*

n>1 1
=
{nQZl {1

Hence, 2 is an upper bound for B. Note: 2 € B for n = 1. Thus, max B =sup B = 2.
o inf B < 0. We have

-
3fes!

1 1
— 22*“!‘72
n n

Vv v

1 1
VnEN*:7+7>O
n o n

So, 0 is a lower bound for B. For any € > 0, there exists (?) n. € N* such that i + i

Let us take € > 0, then we have Vn € N* n+1< 2n <= "";1 < 2’;7 which leads to + s . So
for f—i—nl < g, it is sufficient to take: E <g <— g < n. Choose Ne = [ ] + 1. Thus, me—O but

n
0 ¢ B, so min B does not exist.

3. C={e ", neN}

e supC Z1 (as e~™ approaches 0 for increasing n).
ForallneN: 0<n < —n<0 < e " <1, then 1is an upper bound for C.
Note that 1 € C for n =0, so maxC =supC = 1.

o infC <0 (trivial since e™™ is always positive)
For all n € N: e > 0, so 0 is a lower bound for C.
For any € > 0, there exists (?) n. € N such that e™ " < ¢.
Let € > 0, then e ™" <& <= —n <In(e) < —In(e) < n. It suffices to take n. = [ —In(e)] + 1.
Therefore, inf C' = 0, but 0 ¢ C so min C' does not exist.

4. D={% -2,neN}



° supD;—l
Foralln e N*: 1 <n «<— 1<n? «— #Sl <— #—QS—LSO—1isanupperboundforD.
Note that —1 € D for n =1, so max D =sup D = —1.

o infD = -2
Foralln € N*: 0 < 7 <= —2 < % —2,s0 —2is a lower bound for D.
For any € > 0, there exists (?) n. € N* such that -z —2 <& —2.

Let ¢ >0, then 5 —2<e—-2 <= L <e < l<n?

Ne = [ﬁ] + 1.
Therefore, inf D = —2, but —2 ¢ D so min D does not exist.

1

S since n € N, it suffices to take



