Solutions of tutorial exercises set 1:

Dr Hocine RANDJI

November 18, 2023

This document is supplemented for the first chapter lecture notes (Analyses 1).

Exercise 01:

A)

1. For all real numbers x and y , we have:

$$
2|x| = |(x + y) + (x - y)| \implies 2|x| \le |x + y| + |x - y|
$$

$$
2|y| = |(x + y) + (y - x)| \implies 2|y| \le |x + y| + |x - y|
$$

Therefore,

$$
|x| + |y| \le |x + y| + |x - y|, \forall x, y \in \mathbb{R}.
$$

- 2. $\forall x, y \ge 0$, we have $x + y \le x + 2\sqrt{xy} + y$; because $2\sqrt{xy} \ge 0$, which leads to $x + y \le (\sqrt{x} + \sqrt{y})^2$ we find $\sqrt{x + y} \le \sqrt{x} + \sqrt{y}$.
- 3. For all $x, y \ge 0$ such that $x = (x y) + y$ and $(x y) + y \le |x y| + y$, so we have

$$
\sqrt{x} \le \sqrt{|x - y| + y}.
$$

Using the result in question 2, we find $\sqrt{x} \leq \sqrt{|x-y|} + \sqrt{y}$, this implies

$$
\sqrt{x} - \sqrt{y} \le \sqrt{|x - y|}.\tag{1}
$$

Similarly, we have $\sqrt{y} \le \sqrt{|y-x| + x}$, and using the question 2, we get $\sqrt{y} \le \sqrt{|x-y|} + \sqrt{x}$, which implies: √ √

$$
\sqrt{x} - \sqrt{y} \ge -\sqrt{|x - y|} \tag{2}
$$

Combining equations [\(1\)](#page-0-0) and [\(2\)](#page-0-1), we get $-\sqrt{|x-y|} \leq \sqrt{x} - \sqrt{y} \leq |x-y|$, which implies $|\sqrt{x} - \sqrt{y}| \leq \sqrt{|x-y|}$. B)

1. For any $x \in \mathbb{R}$, we have

$$
[x] \le x \le [x] + 1,
$$

which implies

$$
[x] + m \le x + m \le [x] + m + 1,
$$

for all $m \in \mathbb{Z}$. On the other hand,

$$
[x+m] \le x+m \le [x+m]+1,
$$

since $[x + m]$ is the largest integer less then $x + m$, we have

$$
[x] + m \leq [x + m]
$$

Similarly, $[x + m] + 1$ is the smallest integer greater than or equal to $x + m$, so

$$
[x + m] + 1 \le [x] + m + 1
$$

Combining these, we get

$$
[x+m] \le [x] + m
$$

From $[x] + m \leq [x + m]$ and $[x + m] \leq [x] + m$, we conclude $[x + m] = [x] + m$.

- 2. If $x \leq y$, then $[x] \leq x \leq y < [y] + 1$, so $[x] \leq y < [y] + 1$. As $[y]$ is the greatest integer less than or equal to y and [x] is an integer, we have $[x] \leq [y]$.
- 3. $[x] \leq x < [x] + 1$ and $[y] \leq y < [y] + 1$ imply $[x] + [y] \leq x + y < [x] + [y] + 2$. Since $[x + y]$ is the greatest integer less than or equal to $x + y$, we get

$$
[x] + [y] \le [x + y].\tag{3}
$$

Also, $[x + y] + 1$ is the smallest integer greater than $x + y$, so $[x + y] + 1 \leq [x] + [y] + 2$, leading to

$$
[x+y] \le [x] + [y] + 1. \tag{4}
$$

From (3) and (4) , we find

$$
[x] + [y] \le [x + y] \le [x] + [y] + 1.
$$

Exercise 02:

A)

- 1. Let $x \in \mathbb{Q}$ and $y \notin \mathbb{Q}$. We assume by contradiction that $z = x + y \in \mathbb{Q}$, which implies $y = z x \in \mathbb{Q}$, leading to a contradiction.
- 2. Look at the solution for exercise 7 from the solutions of tutorial exercises set 0.

B) We have:

$$
x^{2} = 2a + 2|a - 2| = \begin{cases} 4a - 4, & \text{if } a \ge 2\\ 4, & \text{if } 1 \le a \le 2 \end{cases}
$$

Exercise 03:

1.

2. $A = [-$ √ 2, √ 2[, (4th case in the above table).

3.
$$
A = \{\frac{n-1}{n}, \text{where } n \in \mathbb{N}^*\}
$$
. For all $n \in \mathbb{N}^* : n \ge 1 \Leftrightarrow n-1 \ge 0 \Rightarrow \frac{n-1}{n} \ge 0$ and $0 \in A$, hence $\min A = \inf A = 0$.

$$
\sup A=1 \Leftrightarrow \begin{cases} (\mathrm{a}) \ \ \forall n \in \mathbb{N}^*, \frac{n-1}{n} \leq 1. \\ (\mathrm{b}) \ \ \forall \varepsilon > 0, \exists n_\varepsilon \in \mathbb{N}^* : 1-\varepsilon < \frac{n_\varepsilon-1}{n_\varepsilon}. \end{cases}
$$

Let us discuss these two conditions:

(a) $\forall n \in \mathbb{N}^*, n-1 \leq n \Leftrightarrow \frac{n-1}{n} \leq 1.$ (b) Let $\varepsilon > 0$, $1 - \varepsilon < \frac{n-1}{n} \Leftrightarrow 1 - \varepsilon < 1 - \frac{1}{n} \Leftrightarrow \varepsilon > \frac{1}{n} \Leftrightarrow n > \frac{1}{\varepsilon}$

Then the condition related to n and ε , suggesting that n_{ε} can be taken as $\left[\frac{1}{\varepsilon}\right] + 1$.

Exercise 04:

$$
B = \{ |x - y|; (x, y) \in A^2 \}.
$$

1. If A is a bounded subset, then sup A and inf A exist. Let sup $A = M$ and inf $A = m$. For all (x, y) in A^2 : let us take, $m \le x \le M$ and $m \le y \le M$, which leads to $-M \le -y \le -m \Rightarrow -(M-m) \le x-y \le M-m$

$$
\Leftrightarrow |x - y| \le M - m.
$$

Therefore, $M - m$ is an upper bound for B. 2. We have

If
$$
\sup A = M
$$
, then for all $\varepsilon > 0$, there exists $x \in A$ such that $M - \frac{\varepsilon}{2} < x$ (5)

and

If inf
$$
A = m
$$
, then for all $\varepsilon > 0$, there exists $y \in A$ such that $y < m + \frac{\varepsilon}{2}$ (6)

Combining (5) and (6) , we get:

$$
\forall \varepsilon > 0, \exists (x, y) \in A^2, (M - m) - \varepsilon < x - y
$$

Since $x - y \leq |x - y|$, we have:

$$
\forall \varepsilon > 0, \exists (x, y) \in A^2, (M - m) - \varepsilon < |x - y|
$$

Consequently, $\sup B = M - m = \sup A - \inf A$.

Exercise 05:

1. (a) Let us show that: $\sup(A \cup B) \stackrel{?}{=} \max(\sup A, \sup B)$. We have on one hand:

$$
\begin{cases} A \subset (A \cup B) \\ \text{and} \\ B \subset (A \cup B) \end{cases}
$$

This implies:

$$
\begin{cases} \sup A \le \sup (A \cup B) \\ \text{and} \\ \sup B \le \sup (A \cup B) \end{cases}
$$

Therefore,

$$
\max(\sup A, \sup B) \le \sup (A \cup B) \tag{7}
$$

On the other hand, if $x \in A \cup B$, then:

$$
\begin{cases}\nx \in A \\
\text{or} \\
x \in B \\
\text{or} \\
\text{or} \\
\end{cases}
$$

This leads to:

So, $x \le \max(\sup A, \sup B)$, implying that $\max(\sup A, \sup B)$ is an upper bound for $A \cup B$. Since $\sup(A \cup B)$ is the smallest upper bound for $A \cup B$, we have

 $x \leq \sup B$

 $\overline{\mathcal{L}}$

$$
\sup(A \cup B) \le \max(\sup A, \sup B) \tag{8}
$$

Combining [\(7\)](#page-2-1) and [\(8\)](#page-2-2), we establish the equality.

(b) Let us show that: $\inf(A \cup B) \stackrel{?}{=} \min(\inf A, \inf B)$. On one hand:

$$
\begin{cases} A \subset (A \cup B) \\ \text{and} \\ B \subset (A \cup B) \end{cases}
$$

This implies:

$$
\begin{cases} \inf A \ge \inf(A \cup B) \\ \text{and} \\ \inf B \ge \inf(A \cup B) \end{cases}
$$

Therefore,

$$
\min(\inf A, \inf B) \ge \inf(A \cup B) \tag{9}
$$

On the other hand, if $x \in A \cup B$, then:

$$
\begin{cases} x \in A \\ \text{or} \\ x \in B \end{cases}
$$

This leads to:

$$
\begin{cases} x \geq \inf A \\ \text{or} \\ x \geq \inf B \end{cases}
$$

So, $x \ge \min(\inf A, \inf B)$, implying that $\min(\inf A, \inf B)$ is a lower bound for $A \cup B$. Since $\inf(A \cup B)$ is the largest lower bound for $A \cup B$, we have

$$
\inf(A \cup B) \ge \min(\inf A, \inf B) \tag{10}
$$

Combining (9) and (10) , we establish the equality.

2. If $A \cap B \neq \emptyset$, then, let us prove that:

(a)

$$
\sup(A \cap B) \stackrel{?}{\leq} \min(\sup A, \sup B)
$$

$$
\begin{cases} (A \cap B) \subset A \\ \text{and} \\ (A \cap B) \subset B \end{cases}
$$

This implies:

$$
\begin{cases} \sup(A \cap B) \le \sup A \\ \text{and} \\ \sup(A \cap B) \le \sup B \end{cases}
$$

Hence, $\sup(A \cap B) \leq \min(\sup A, \sup B)$.

(b)

$$
\inf(A \cap B) \stackrel{?}{\geq} \max(\inf A, \inf B)
$$

Let us take

$$
\begin{cases} (A \cap B) \subset A \\ \text{and} \\ (A \cap B) \subset B \end{cases}
$$

This implies:

$$
\begin{cases} \inf(A \cap B) \ge \inf A \\ \text{and} \\ \inf(A \cap B) \ge \inf B \end{cases}
$$

Thus, $\inf(A \cap B) \ge \max(\inf A, \inf B)$.

3. (a) Let us show that:

$$
\sup(A+B)\stackrel{?}{=}\sup A+\sup B
$$

Given:

$$
\sup A = M_A \implies \begin{cases} \forall x \in A : x \le M_A \dots (*) \\ \forall \varepsilon > 0, \exists x \in A : M_A - \frac{\varepsilon}{2} < x \dots (*) \end{cases}
$$
\n
$$
\sup B = M_B \implies \begin{cases} \forall y \in B : y \le M_B \dots (*) \\ \forall \varepsilon > 0, \exists y \in B : M_B - \frac{\varepsilon}{2} < y \dots (*) \end{cases}
$$

Then:

$$
(*1) + (*3) \implies \forall z \in A + B : z \le M_A + M_B
$$

$$
(*2) + (*4) \implies \forall \varepsilon > 0, \exists z \in A + B : (M_A + M_B) - \varepsilon < z
$$

Therefore, $\sup(A + B) = \sup A + \sup B$. (b) Now, let us show that:

$$
\inf(A+B) \stackrel{?}{=} \inf A + \inf B
$$

Given:

$$
\inf A = m_A \implies \begin{cases} \forall x \in A : m_A \le x \dots (*) \\ \forall \varepsilon > 0, \exists x \in A : x < m_A + \frac{\varepsilon}{2} \dots (*) \\ \forall \varepsilon > 0, \exists x \in A : x < m_A + \frac{\varepsilon}{2} \dots (*) \end{cases}
$$
\n
$$
\inf B = m_B \implies \begin{cases} \forall y \in B : m_B \le y \dots (*) \\ \forall \varepsilon > 0, \exists y \in B : y < m_B + \frac{\varepsilon}{2} \dots (*) \end{cases}
$$

Then:

$$
(**1) + (**3) \implies \forall z \in A + B : m_A + m_B \le z
$$

$$
(**2) + (**4) \implies \forall \varepsilon > 0, \exists z \in A + B : z < (m_A + m_B) + \varepsilon
$$

Therefore, $\inf(A + B) = \inf A + \inf B$.

4. (a) Let us show that:

$$
\sup(-A) \stackrel{?}{=} -\inf A
$$

• $\forall x \in A : x \ge \inf A \implies -x \le - \inf A$. Hence, $-\inf A$ is an upper bound for $-A$. Since sup $(-A)$ is the smallest upper bound for $-A$, we have

$$
\sup(-A) \le -\inf A \tag{11}
$$

• $\forall (-x) \in (-A) : -x \leq \sup(-A) \implies x \geq -\sup(-A)$. Hence, $-\sup(-A)$ is a lower bound for A. Since $\inf A$ is the largest lower bound for $A,$ we have

$$
\inf A \ge -\sup(-A) \tag{12}
$$

From (11) and (12) , we establish the equality.

(b) Let us show that:

$$
\inf(-A) \stackrel{?}{=} -\sup A
$$

• $\forall x \in A : x \leq \sup A \implies -x \geq -\sup A$. Hence, $-\sup A$ is a lower bound for $-A$. Since $\inf(-A)$ is the largest lower bound for $-A$, we have

$$
\inf(-A) \ge -\sup A \tag{13}
$$

• $\forall (-x) \in (-A) : -x \ge \inf(-A) \iff x \le -\inf(-A)$. Hence, $-\inf A$ is an upper bound for A. Since sup A is the smallest upper bound for A, we have sup $A \le -\inf(-A)$, which leads

$$
-\sup A \ge \inf(-A) \tag{14}
$$

From [\(13\)](#page-4-2) and [\(14\)](#page-5-0), we establish the equality.

Exercise 06:

- 1. $A = \left\{ \frac{3n+1}{2n+1}, n \in \mathbb{N} \right\}$
	- Let us show that: inf $A = 1$. We have

$$
\forall n \in \mathbb{N}: 3n \geq 2n \iff 3n+1 \geq 2n+1 \iff \frac{3n+1}{2n+1} \geq 1
$$

So, 1 is a lower bound for A. Note: $1 \in A$ for $n = 0$. Thus, $\min A = \inf A = 1$.

• sup $A \stackrel{?}{=} \frac{3}{2}$. We have

$$
\forall n \in \mathbb{N}: 2 < 3 \implies 6n + 2 < 6n + 3 \iff \frac{3n + 1}{2n + 1} < \frac{3}{2}
$$

Therefore, $\frac{3}{2}$ is an upper bound for A; but $\frac{3}{2} \notin A$. The verification of the supremum characterization leads to: For any $\varepsilon > 0$, there exists (?) $n_{\varepsilon} \in \mathbb{N}$ such that $\frac{3}{2} - \varepsilon < \frac{3n_{\varepsilon}+1}{2n_{\varepsilon}+1}$. We have: $\frac{3}{2} - \varepsilon < \frac{3n_{\varepsilon}+1}{2n_{\varepsilon}+1}$, which implies $\left(\frac{3}{2}-\varepsilon\right)(2n_{\varepsilon}+1) < (3n_{\varepsilon}+1) \implies (3-2\varepsilon)(2n_{\varepsilon}+1) < (6n_{\varepsilon}+2)$, then $(6n_{\varepsilon}+3-4\varepsilon n_{\varepsilon}-2\varepsilon) <$ $(6n_{\varepsilon}+2)\rightarrow 1<2\varepsilon(2n_{\varepsilon}+1)$. Hence, $\frac{1-2\varepsilon}{\varepsilon}<\frac{n_{4\varepsilon}}{2}$. Choose $n_{\varepsilon} = \left[\frac{1-2\varepsilon}{4\varepsilon}\right] + 1$. Thus, sup $A = \frac{3}{2}$, but $\frac{3}{2} \notin A$, so max A does not exist.

- 2. $B = \left\{ \frac{1}{n} + \frac{1}{n^2}, n \in \mathbb{N}^* \right\}$
	- sup $B \stackrel{?}{=} 2$. We have $\forall n \in \mathbb{N}^*$:

$$
\begin{cases} n \ge 1 \\ n^2 \ge 1 \end{cases} \implies \begin{cases} 1 \ge \frac{1}{n} \\ 1 \ge \frac{1}{n^2} \end{cases} \implies 2 \ge \frac{1}{n} + \frac{1}{n^2}
$$

Hence, 2 is an upper bound for B. Note: $2 \in B$ for $n = 1$. Thus, $\max B = \sup B = 2$.

• inf $B = 0$. We have

$$
\forall n\in\mathbb{N}^*: \frac{1}{n}+\frac{1}{n^2}>0
$$

So, 0 is a lower bound for B. For any $\varepsilon > 0$, there exists (?) $n_{\varepsilon} \in \mathbb{N}^*$ such that $\frac{1}{n_{\varepsilon}} + \frac{1}{n_{\varepsilon}^2} < \varepsilon$.

Let us take $\varepsilon > 0$, then we have $\forall n \in \mathbb{N}^* : n + 1 \leq 2n \iff \frac{n+1}{n^2} \leq \frac{2n}{n^2}$, which leads to $\frac{1}{n} + \frac{1}{n^2} \leq \frac{2}{n}$. So for $\frac{1}{n} + \frac{1}{n^2} \leq \varepsilon$, it is sufficient to take: $\frac{2}{n} < \varepsilon \iff \frac{2}{\varepsilon} < n$. Choose $n_\varepsilon = \left[\frac{2}{\varepsilon}\right] + 1$. Thus, $\inf B = 0$, but $0 \notin B$, so min B does not exist.

$$
3. \ C=\{e^{-n}, n\in \mathbb{N}\}
$$

- sup $C = 1$ (as e^{-n} approaches 0 for increasing *n*). For all $n \in \mathbb{N}$: $0 \le n \iff -n \le 0 \iff e^{-n} \le 1$, then 1 is an upper bound for C. Note that $1 \in C$ for $n = 0$, so $\max C = \sup C = 1$.
- inf $C = 0$ (trivial since e^{-n} is always positive) For all $n \in \mathbb{N}$: $e^{-n} > 0$, so 0 is a lower bound for C. For any $\varepsilon > 0$, there exists (?) $n_{\varepsilon} \in \mathbb{N}$ such that $e^{-n_{\varepsilon}} < \varepsilon$. Let $\varepsilon > 0$, then $e^{-n} < \varepsilon \iff -n < \ln(\varepsilon) \iff -\ln(\varepsilon) < n$. It suffices to take $n_{\varepsilon} = \lfloor -\ln(\varepsilon) \rfloor + 1$. Therefore, inf $C = 0$, but $0 \notin C$ so min C does not exist.

4.
$$
D = \{ \frac{1}{n^2} - 2, n \in \mathbb{N}^* \}
$$

• $\sup D = -1$

For all $n \in \mathbb{N}^*$: $1 \leq n \iff 1 \leq n^2 \iff \frac{1}{n^2} \leq 1 \iff \frac{1}{n^2} - 2 \leq -1$, so -1 is an upper bound for D. Note that $-1 \in D$ for $n = 1$, so $\max D = \sup D = -1$.

• inf $D\stackrel{?}{=} -2$

For all $n \in \mathbb{N}^*$: $0 < \frac{1}{n^2} \iff -2 < \frac{1}{n^2} - 2$, so -2 is a lower bound for D. For any $\varepsilon > 0$, there exists (?) $n_{\varepsilon} \in \mathbb{N}^*$ such that $\frac{1}{n^2} - 2 < \varepsilon - 2$. Let $\varepsilon > 0$, then $\frac{1}{n^2} - 2 < \varepsilon - 2 \iff \frac{1}{n^2} < \varepsilon \iff \frac{1}{\varepsilon} < n^2 \iff \frac{1}{\sqrt{\varepsilon}} < n$; since $n \in \mathbb{N}$, it suffices to take $n_{\varepsilon}=\left[\frac{1}{\sqrt{\varepsilon}}\right]+1.$

Therefore, inf $D = -2$, but $-2 \notin D$ so min D does not exist.