Directed Work N°4

Exercise1 :

Write an algorithm that displays the following numbers:

- ➤ 1 2 3 4 5 6 7 8 9
- > 987654321
- > 1 2 3 4 6 7 8 9
- > 24681012141618
- > -1 2 -3 4 -5 6 -7 8 -9

Exercise 2:

Write an algorithm that calculates N! where N is a natural number.

Exercise 3:

Write an algorithm that calculates the product of two positive integer numbers x and y without using the multiplication operator (*).

Exercise 4:

Write an algorithm that calculates the power $\mathbf{x}^{\mathbf{y}}$, where x and y are integers (All possible cases must be considered).

Exercise 5

Consider the following algorithm :

Algorithm exo5	
N,i,j,S,P : integer ;	
begin	Questions :
read (N) ;	-
if (N<0) then	1) Provide the execution results for: $N = -3$, $N =$
<pre>write (''error'') ;</pre>	0. $N = 5?$
else	
$S \leftarrow 0$;	2) What does this algorithm do (provide the
for i going from 1 to N do	2) what does this algorithm do (provide the
P← 1;	general form of the sum $S =)?$
for j going from 1 to i do	
P← P * j;	3) Rewrite the algorithm using a single loop.
End for	
$S \leftarrow S + P;$	4) Is there another method to ensure that the
End for	entered value of N is positive, which one?
End if	
write (S) ;	
end.	

Exercise 6

Write algorithms that allow to :

- 1) Calculate and display the sum $S = x + x^2 + x^3 + \dots x^n$.
- 2) Calculate and display the sum $S = x x^2 + x^3 \dots x^n$.
- 3) Calculate and display the approximate value of e^{x} given by Taylor Formula.

Let's consider the mathematical Taylor formula (1715) that allows for the approximate calculation of the exponential function, e^x :

 $e^{x} = \sum_{i=0}^{n} \frac{x^{i}}{i!} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots + \frac{x^{n}}{n!} \qquad \text{where}: \begin{cases} x: \text{ is a real number} \\ n: \text{ is a positive integer number.} \end{cases}$

Exercise 7:

Write an algorithm that reads a positive integer N and displays the number of digits it contains.

Exercise 8:

Write an algorithm that determines whether a read positive integer N is prime or not.

Exercise 9:

Write an algorithm that displays all prime numbers less than 100.

Exercise 10:

Write an algorithm that calculates the greatest common divisor (GCD) of two natural numbers, a and b.

Exercise 11:

Write an algorithm that reads N integer numbers and displays the maximum of those numbers.

Exercise 12:

Write an algorithm that reads N integer numbers and displays whether they are sorted in ascending order or not.

Exercise 13:

Write an algorithm that reads a positive integer N and displays the sum, the count, and the average of its divisors.