Exercice 2.1 DONE IN THE LECTURE

(Demonstration of Morgan's Law).
Let A and B be parts of a set E, demonstrate that:

1. $(A \cap B)^{c}=A^{c} \cup B^{c}$ and
2. $(A \cup B)^{c}=A^{c} \cap B^{c}$

Exercise 2.2

1. We consider the following sets:

$$
A=\{1,3,7,9,12\}, B=\{1,3,2\}, C=\{3,4,7,9\}, D=\{3,1\} .
$$

Describe the following sets and their cardinals:

$$
A \cap B, A \backslash B, A \Delta B, D \times C, B \cap C, C_{A} D\left(D^{c}\right), D \cup A, \mathrm{P}(C)
$$

2. Describe the following sets:

$$
F=[-2,1[\cap]-\infty, 0], E=[-2,1[\cup]-\infty, 0], G=[-2,1[\Delta]-\infty, 0], H=C_{R} F
$$

Exercise 2.3

Let A, B and C be three subsets of a set E. Prove the following Morgan's laws:

1. $(\mathrm{A} \cap \mathrm{B}) \cup \mathrm{C} \subset(\mathrm{A} \cup \mathrm{C}) \cap(\mathrm{B} \cup \mathrm{C})$

Exercise 2.4 HOMEWORK

Let A, B and C be three parts of a set E .
Show that: $(A \backslash B) \backslash C=A \backslash(B \cup C)$.

Exercise 2.5

Let \mathcal{R} be the relation defined on R^{2} by: x \mathcal{R} y if and only if: $x^{2}-y^{2}=x-y$

$$
\left(\mathcal{R}=\left\{(x, y) \mid x^{2}-y^{2}=x-y\right\}\right)
$$

1. Show that R is an equivalence relation. (reflexive, symmetric and transitive)
2. find the equivalence class of an element x through the equivalent relation \mathcal{R}

Exercise 2.6

Let R be the relation defined on $\mathrm{N} *$ by:

$$
\mathrm{n} \mathcal{R} \mathrm{~m} \Leftrightarrow \exists k \in \mathbb{N}^{*}: \mathrm{n}=\mathrm{km}
$$

$$
\text { we can write also: } \mathcal{R}=\left\{(n, m) \mid \mathrm{n}=\mathrm{km}, k \in \mathbb{N}^{*}\right\}
$$

Show that \mathcal{R} is a partial order relation

Exercise 2.7

In the following exercises, determine whether each equation is a function.
a. $2 x+y=-3$
b. $y=x^{2}$
c. $x+y^{2}=-5$

Exercise 2.8

1. Check whether the following functions are injective, surjective or bijective:

$$
\begin{array}{ccc}
f: \mathbb{N} \rightarrow \mathbb{N} & g: \mathbb{Z} \rightarrow \mathbb{N} & h: \mathbb{R}-\{3\} \rightarrow \mathbb{R} \\
x \rightarrow x^{2} & x \rightarrow 4 x^{2}+5 & x \rightarrow \frac{2-x}{x+3}
\end{array}
$$

2. Calculate $\mathrm{h} \circ \mathrm{f}$ and $\mathrm{f} \circ \mathrm{h}$
3. Show that the map $u:] 1, \infty[\rightarrow] 0, \infty\left[\right.$ defined by: $u(x)=\frac{1}{x-1}$ is bijective and calculate its reciprocal function.

Exercise 2.9

Let $f:\left[0,+\infty\left[\rightarrow\left[0,+\infty\left[\right.\right.\right.\right.$ be a function defined by: $f(x)=(\sqrt{x}+1)^{2}-1$

1. Show that f is bijective.
2. Determine its reciprocal function f^{-1}
