University center of Mila Institute of Science and Technology Dr.Chellouf yassamine Analsis 1 Year: 2023/2024 Department of informatics Email:Y.chellouf@center-univ-mila.dz 1st Year

Exercises Serie N° 2

Exercise 1

Show by induction that:

1. $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$. 2. $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.

Exercise 2

Determine, by justifying your answers, if the following sequences are convergent:

1.
$$U_n = \frac{\cos n - 2}{n^4}, \quad \forall n \in \mathbb{N}^*.$$

2. $V_n = \frac{3n + 5(-1)^n}{2n + 1}, \quad \forall n \in \mathbb{N}.$
3. $W_n = (-1)^n (\frac{n+1}{n}), \quad \forall n \in \mathbb{N}^*.$
4. $Z_n = \sqrt{2n + 1} - \sqrt{2n - 1}, \quad \forall n \in \mathbb{N}^*.$

Exercise 3

Let $(u_n)_{n\in\mathbb{N}}$ be the sequence of real numbers defined by $u_0\in [0.1]$, and by the recurrence relation

$$u_{n+1} = \frac{u_n}{2} + \frac{(u_n)^2}{4}$$

- 1. Show that: $\forall n \in \mathbb{N}, u_n > 0.$
- 2. Show that: $\forall n \in \mathbb{N}, u_n \leq 1$.
- 3. Show that the sequence is monotonic. Deduce that the sequence is convergent.
- 4. Determine the limit of the sequence $(u_n)_{n \in \mathbb{N}}$.

Exercise 4

Prove that the following two sequences are adjacent

$$\forall n \in \mathbb{N}, \qquad u_n = \sum_{k=1}^n \frac{1}{k^2}, \qquad v_n = u_n + \frac{1}{n}.$$

Exercise 5

1. Let
$$u_n = \frac{E(\sqrt{n})}{n}$$
, for all $n \in \mathbb{N}^*$, show that

 $\lim_{n \to +\infty} u_n = 0.$

2. Let $v_n = \frac{E(\sqrt{n})^2}{n}$, for all $n \in \mathbb{N}^*$, show that the sequence $(v_n)_{n \in \mathbb{N}^*}$ converges and determine its limit. (*)

Exercise 6

Calculate the following limits, if they exist, of the following sequences:

1.
$$u_n = \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{(n+1)(n+2)}$$
.
2. $v_n = \frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n-1}{n^2}$.
3. $w_n = \frac{\ln(n+1)}{\ln n}$.
4. $z_n = \sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1}$. (*)

Exercise 7

We consider the sequence $(u_n)_{n\geq 1}$ given by: $u_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$.

- 1. Show that $\frac{1}{n^2} \le \frac{1}{n-1} \frac{1}{n}$.
- 2. Show that the sequence $(u_n)_{n\geq 1}$ is bounded above by 2.
- 3. Show that the sequence $(u_n)_{n\geq 1}$ is increasing.
- 4. Deduce that $(u_n)_{n\geq 1}$ is converges.

Exercise 8

We consider the sequence $(u_n)_{n\in\mathbb{N}}$ defined by $u_0 = 0$ and by the recurrence relation

$$u_{n+1} = \frac{1}{6}u_n^2 + \frac{3}{2}$$

- 1. Show that for all $n \in \mathbb{N}^*$, $u_n > 0$.
- 2. Calculate the limit of the sequence $(u_n)_{n \in \mathbb{N}}$.
- 3. Show that for all $n \in \mathbb{N}$, $u_n < 3$.
- 4. Show that the sequence is increasing, what can we conclude from this?

Exercise 9 (Supplementary)

We consider the sequence $(u_n)_{n \in \mathbb{N}^*}$ defined by

$$u_n = \frac{1}{3 + |\sin(1)|\sqrt{1}} + \frac{1}{3 + |\sin(2)|\sqrt{2}} + \dots + \frac{1}{3|\sin(n)|\sqrt{n}}$$

Show that $\lim_{n \to +\infty} u_n = +\infty$.

Exercises marked with (*) are left to students.