CHAPTER 2

The Numerical Sequences

Dr. Chellouf yassamine Email: *y.chellouf@centre-univ-mila.dz*

CONTENTS

CHAPTER 1

THE NUMERICAL SEQUENCES

1.1 The general concept of a sequence

1.1.1 *Definition*

Definition 1.1.1. A sequence u or $(u_n)_{n \in \mathbb{N}}$ is a function from \mathbb{N} to \mathbb{R} :

$$
u: \mathbb{N} \longrightarrow \mathbb{R},
$$

$$
n \longmapsto u_n.
$$

The elements of a sequence are called the terms. The *n* − *th* term of a sequence is called the general term of the sequence, and we denote $(u_n)_{n \in \mathbb{N}}$.

Example 1.1.1. √ *ⁿ*)*n*≥⁰ *is the sequence of terms:* ⁰, ¹, √ 2, √ $\overline{3}, \cdots$.

2. $((-1)^n)_{n\geq 0}$ *is the sequence of terms that are alternated:* +1, −1, +1, −1, · · · *.*

1.1.2 *Explicit definition*

Just as real-valued functions from Calculus one were usually expressed by a formula, we will most often encounter sequences that can be expressed by a formula. For example: $u_n = 3n + 1$, $v_n = \sin(n\pi/6)$, $w_n = (1/2)^n$.

1.1.3 *Definition by recurrence*

Another way to define a sequence is recursive, that is, by giving the first term and a recurrence relation between a term and the next term. For example

$$
\begin{cases}\n u_0 = 1, \\
u_{n+1} = 2u_n + 3, \ n \in \mathbb{N}.\n\end{cases}
$$

1.2 Qualitative features of sequences

1.2.1 *Monotonicity*

Definition 1.2.1. A sequence $(u_n)_{n \in \mathbb{N}}$ is called **increasing** (or **strictly increasing**) if $u_n \leq u_{n+1}$ *(or* $u_n < u_{n+1}$ *), for all* $n \in \mathbb{N}$ *.* Similarly a sequence $(u_n)_{n\in\mathbb{N}}$ is **decreasing** (or **strictly decreasing**) if $u_n \ge u_{n+1}$ (or $u_n > u_{n+1}$), *for all* $n \in \mathbb{N}$ *.*

If a sequence is increasing (or strictly increasing), decreasing (or strictly decreasing), it is said to be monotonic (or strictly monotonic).

Example 1.2.1. *The sequence* $u_n = \frac{2^n - 1}{2^n}$ $\frac{1}{2^n}$ which starts

$$
\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \cdots
$$

is increasing. On the other hand, the sequence $v_n = \frac{n+1}{n}$ *n which starts*

$$
\frac{2}{1}, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \cdots
$$

is decreasing.

1.2.2 *Boundedness*

Definition 1.2.2. A sequence $(u_n)_{n\in\mathbb{N}}$ is **bounded above** if there is some number *M* so that for all *n* ∈ N, we have u_n ≤ *M.* Likewise, a sequence $(u_n)_{n \in \mathbb{N}}$ *is bounded below if there is some number m* so that for every $n \in \mathbb{N}$, we have $u_n \geq m$.

If a sequence is both bounded above and below, the sequence is said to be bounded.

Remark 1.2.1. *If a sequence* $\{u_n\}_{n=1}^{\infty}$ *n*=0 *is increasing it is bounded below by u*0*, and if it is decreasing it is bounded above by* u_0 *.*

Theorem 1.2.1. *If the sequence* (u_n) *is bounded and monotonic, then* $\lim_{n\to\infty} u_n$ *exists.*

1.3 Convergent Sequences

Definition 1.3.1. *We say that the sequence* $(u_n)_{n \in \mathbb{N}}$ *is converge to the scalar l if*

$$
\forall \varepsilon > 0, \ \exists \ n_0 \in \mathbb{N} : \ \forall n \ge n_0 : \ |u_n - l| < \varepsilon.
$$

In this case we write $\lim_{n\to\infty} u_n = l$, (*l finite*). *If there is no a finite value l such that* $\lim_{n\to\infty} u_n = l$, *then we say that the limit does not exist, or equivalently that the sequence diverges.*

Remark 1.3.1. *Any open interval with center l contains all the terms of the sequence from a certain rank.*

Example 1.3.1. *1.* $u_n = \frac{3}{4}$ 4 !*n .* $\lim_{n\to+\infty}u_n=\lim_{n\to+\infty}$ $\sqrt{3}$ 4 !*n* $=\lim_{n\to+\infty}e^{n\ln(\frac{3}{4})}=0$. So (u_n) converges to 0.

2. $v_n = (-1)^n$. v_n *is a divergent sequence.*

3. $w_n = \sin(n)$ *. The limit of* w_n *does not exist, so* w_n *is divergent.*

Proposition 1.3.1. *If the sequence* $(u_n)_{n \in \mathbb{N}}$ *is convergent then it has a unique limit.*

Proof 1. Assume that $\lim_{n\to+\infty} u_n = l$, and $\lim_{n\to+\infty} u_n = l'$, we need to show that $l = l'$.

- $\lim_{n\to+\infty} u_n = l \Longleftrightarrow \forall \varepsilon > 0, \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : |u_n l| < \frac{\varepsilon}{2}$ *. and*
- $\lim_{n\to+\infty} u_n = l' \iff \forall \varepsilon > 0, \exists n_1 \in \mathbb{N} : \forall n \ge n_1 : |u_n l'| < \frac{\varepsilon}{2}$ *.*

We have $|l - l'| = |l - u_n + u_n - l'| \leq |l - u_n| + |u_n - l'| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. So $\forall \varepsilon > 0 : |l - l'| < \varepsilon$, then $l = l'.$

Proposition 1.3.2. *If the sequence* $(u_n)_{n \in \mathbb{N}}$ *converges to l, then the sequence* $|u_n|$ *converges to* $|l|$ *.*

Proposition 1.3.3. *any convergent sequence is bounded.*

- **Remark 1.3.2.** *If* $(u_n)_{n \in \mathbb{N}}$ *is increasing and bounded above, then* $(u_n)_{n \in \mathbb{N}}$ *converges to* $l = \sup u_n$.
	- *If* $(u_n)_{n \in \mathbb{N}}$ *is decreasing and bounded below, then* $(u_n)_{n \in \mathbb{N}}$ *is converges to* $l = \inf u_n$.

1.4 The usual rules of limits

If $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ are convergent sequences to *l* and *l'* respectively, and α is any real constant then:

1) $\lim_{n \to +\infty} (u_n + v_n) = l + l'$, 5) $\lim_{n \to +\infty} \frac{1}{u_n}$ $\frac{1}{u_n} = \frac{1}{l}$ $\frac{1}{l}, l \neq 0,$ 2) $\lim_{n\to+\infty}(u_n \times v_n) = l \times l',$ 6) *if* $u_n \le v_n$, then $l \le l'$ $\overline{}$ 3) $\lim_{n\to+\infty} (\alpha u_n) = \alpha l$, w_n , *and* $u_n \leq w_n \leq v_n$, *then* $\lim_{n \to +\infty} w_n = l$.

1.5 Adjacent sequences

Definition 1.5.1. *We say that two real sequences* $(u_n)_{n\in\mathbb{N}}$ *, and* $(v_n)_{n\in\mathbb{N}}$ *are adjacent if they satisfy the following properties:*

- *1.* $(u_n)_{n \in \mathbb{N}}$ *is increasing, and* $(v_n)_{n \in \mathbb{N}}$ *is decreasing,*
- 2. $\lim_{n\to\infty}(u_n v_n) = 0$.

Theorem 1.5.1. *If the two sequences* $(u_n)_{n \in \mathbb{N}}$ *and* $(v_n)_{n \in \mathbb{N}}$ *are adjacent then they converge to the same limit.*

Proof. We assume that $(u_n)_{n \in \mathbb{N}}$ is increasing and $(v_n)_{n \in \mathbb{N}}$ is decreasing. Let $w_n = u_n - v_n$, then

$$
w_{n+1} - w_n = u_{n+1} - v_{n+1} - u_n + v_n,
$$

= $(u_n + 1 - u_n) - (v_{n+1} - v_1),$
 $\geq 0.$

and $\lim_{n\to\infty} w_n = \lim_{n\to\infty} (u_n - v_n) = 0$. Since (w_n) is an increasing sequence and $\lim_{n\to\infty} w_n = 0$, then $\forall n \in \mathbb{N}: w_n \leq 0 \Rightarrow u_n \leq v_n$.

Therefore, $\forall n \in \mathbb{N} : u_0 \le u_n \le v_n \le v_0$. the sequence (u_n) is convergent since it is increasing and bounded above by v_0 , also the sequence (v_n) is convergent, and since $\lim_{n\to\infty}(u_n - v_n) = 0$ we deduce that $\lim_{n\to\infty} u_n = \lim_{n\to\infty} v_n$.

Exercise 1.5.1. *Show that the two sequences* (u_n) *and* (v_n) *are adjacent:*

•
$$
u_n = 1 + \frac{1}{n!}
$$
, and $v_n = \frac{n}{n+1}$.
\n• $u_n = \sum_{k=1}^{n} \frac{1}{k^2}$ and $v_n = u_n + \frac{2}{n+1}$

1.6 Subsequences

It is useful to sometimes consider only some terms of a sequence. A subsequence of ${u_n}_{n=0}^\infty$ $\sum_{n=1}^{\infty}$ is a sequence that contains only some of the numbers from ${u_n}_{n=1}^{\infty}$ $\sum_{n=1}^{\infty}$ in the same order.

.

Definition 1.6.1. Let $\{u_n\}_{n=1}^{\infty}$ be a sequence. Let $\{n_i\}_{i=1}^{\infty}$ be a strictly increasing sequence of *natural numbers, that is* $n_i < n_{i+1}$ *for all* $i \in \mathbb{N}$ *(in other words,* $n_1 < n_2 < n_3 < \cdots$). The sequence $\left\{ u_{n_{i}}\right\} _{i=1}^{\infty}$ is called a subsequence of $\left\{ u_{n}\right\} _{n=1}^{\infty}$ $\sum_{n=1}^{\infty}$ *So the subsequence is the sequence* u_{n_1} , u_{n_2} , u_{n_3} , \cdots .

Example 1.6.1. *Consider the sequence*

$$
u_n = \left(\frac{1}{n}\right)_{n=1}^{\infty} = \left\{1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}, \cdots\right\},\,
$$

 65

then letting $n_k = 2k$ *yields the subsequence*

$$
u_{2k}=\left(\frac{1}{2k}\right)_{k=1}^{\infty}=\left\{\frac{1}{2},\frac{1}{4},\cdots,\frac{1}{2k},\cdots\right\},\,
$$

and letting $n_k = 2k + 1$ *yields the subsequence*

$$
u_{2k+1} = \left(\frac{1}{2k+1}\right)_{k=1}^{\infty} = \left\{\frac{1}{3}, \frac{1}{5}, \cdots, \frac{1}{2k+1}, \cdots\right\}.
$$

Proposition 1.6.1. *If* ${u_n}_{n=0}^{\infty}$ $\sum_{n=1}^{\infty}$ *is a convergent sequence, then every subsequence* ${u_{n_i}}_{i=1}^{\infty}$ *is also convergent, and*

$$
\lim_{n\to+\infty}u_n=\lim_{i\to+\infty}u_{n_i}.
$$

Corollary 1.6.1. *Let* (*un*)*n*∈^N *be a sequence, if it admits a divergent subsequence, or if it admits two subsequences converging to distinct limits, then it diverges.*

Theorem 1.6.1. *(Bolzano-Weierstrass)*

Every bounded sequence has a convergent subsequence.

1.7 Cauchy Sequences

Definition 1.7.1. A real sequence $(u_n)_{n \in \mathbb{N}}$ is called a Cauchy sequence if for every $\varepsilon > 0$, there *exists an* $N \in \mathbb{N}$ *such that* $\forall m, n \in \mathbb{N}$ *, if* $m, n \geq N$ *then*

$$
|u_n-u_m|\leq \varepsilon.
$$

Proposition 1.7.1. *If a sequence is Cauchy, then it is bounded.*

Proposition 1.7.2. *A sequence of real numbers is Cauchy if and only if it converges.*

1.8 Arithmetic sequences

1.8.1 *Definition*

A simple way to generate a sequence is to start with a number u_0 , and add to it a fixed constant *r*, over and over again. This type of sequence is called an **arithmetic sequence**.

Definition 1.8.1. *the sequence* $(u_n)_{n \in \mathbb{N}}$ *is an arithmetic sequence with first term* u_0 *and common difference r if and only if for any integer* $n \in \mathbb{N}$ *we have*

$$
u_{n+1} = u_n + r, \qquad (u_n = u_0 + n.r).
$$

More generally: $u_n = u_p + (n - p) \cdot r$.

1.8.2 *Sum of n terms*

For the arithmetic sequence

$$
S_n = u_0 + u_1 + \cdots + u_{n-1} = n \cdot \frac{u_0 + u_{n-1}}{2}.
$$

1.9 Geometric sequences

1.9.1 *Definition*

Another simple way of generating a sequence is to start with a number v_0 and repeatedly multiply it by a fixed nonzero constant *q*. This type of sequence is called a geometric sequence.

Definition 1.9.1. *the sequence* $(v_n)_{n \in \mathbb{N}}$ *is a geometric sequence with first term* v_0 *and common ratio q* ∈ R ∗ *if and only if for any integer n* ∈ N *we have*

$$
v_{n+1} = q.v_n, \qquad (v_n = v_0.q^n).
$$

More generally: $v_n = v_p.q^{n-p}$.

1.9.2 *Sum of n terms*

For a geometric sequence, if $S_n = 1 + q + q^2 + \cdots + q^n$, then

$$
S_n = \begin{cases} n+1 & si & q = 1, \\ \frac{1-q^{n+1}}{1-q} & si & q \neq 1. \end{cases}
$$