CHAPTER 2

The Numerical Sequences

Dr. Chellouf yassamine Email: y.chellouf@centre-univ-mila.dz

CONTENTS

Co	Contents									i																
1	The Numerical Sequences											1														
	1.1	The ger	ner	ral c	conc	cept	of a	seo	que	nce	•	 •	•	•	•		•		•		•	•				1
		1.1.1	D	efin	itio	n.	• •				 •	 •	•				•		•		•	•				1
		1.1.2	E:	xpli	cit d	defin	itio	<i>n</i> .			 •	 •	•	•	•		•		•		•	•				2
		1.1.3	D	efin	vitio	n by	rec	urr	enc	e	 •	 •	•	•	•		•		•		•	•				2
	1.2	Qualitat	ativ	e fe	eatu	res c	of se	eque	ence	es	 •	 •	•				•		•		•	•				2
		1.2.1	M	lond	oton	nicity	, .			•	 •	 •	•				•	• •	•		•	•				2
		1.2.2	Be	oun	ded	lness				•	 •	 •	•				•	• •	•		•	•				3
	1.3	Converg	rgei	nt S	lequ	ience	es			•	 •	 •	•				•	• •	•		•	•				3
	1.4	The usu	ual	rul	es c	of lin	nits			•	 •	 •	•				•	• •	•		•	•				4
	1.5	Adjacer	ent	seq	uen	ces					 •	 •	•				•		•		•	•				4
	1.6	Subsequ	lue	nce	s.						 •	 •	•				•	•	•			•				5
	1.7	Cauchy	y So	equ	enc	es						 •	•						•			•				6

1.8	Arithmetic sequences										
1.9	1.8.1	Definition	6								
	1.8.2	Sum of n terms	7								
	Geometric sequences										
	1.9.1	Definition	7								
	1.9.2	Sum of n terms	7								

ii

CHAPTER 1

THE NUMERICAL SEQUENCES

1.1 The general concept of a sequence

1.1.1 Definition

Definition 1.1.1. A sequence u or $(u_n)_{n \in \mathbb{N}}$ is a function from \mathbb{N} to \mathbb{R} :

$$u: \mathbb{N} \longrightarrow \mathbb{R},$$
$$n \longmapsto u_n.$$

The elements of a sequence are called **the terms**. The n - th term of a sequence is called **the general term** of the sequence, and we denote $(u_n)_{n \in \mathbb{N}}$.

Example 1.1.1. 1. $(\sqrt{n})_{n\geq 0}$ is the sequence of terms: 0, 1, $\sqrt{2}$, $\sqrt{3}$,

2. $((-1)^n)_{n\geq 0}$ is the sequence of terms that are alternated: $+1, -1, +1, -1, \cdots$.

1.1.2 *Explicit definition*

Just as real-valued functions from Calculus one were usually expressed by a formula, we will most often encounter sequences that can be expressed by a formula. For example: $u_n = 3n + 1$, $v_n = \sin(n\pi/6)$, $w_n = (1/2)^n$.

1.1.3 Definition by recurrence

Another way to define a sequence is recursive, that is, by giving the first term and a recurrence relation between a term and the next term. For example

$$\begin{aligned} u_0 &= 1, \\ u_{n+1} &= 2u_n + 3, \ n \in \mathbb{N}. \end{aligned}$$

1.2 Qualitative features of sequences

1.2.1 Monotonicity

Definition 1.2.1. A sequence $(u_n)_{n \in \mathbb{N}}$ is called *increasing* (or strictly increasing) if $u_n \leq u_{n+1}$ (or $u_n < u_{n+1}$), for all $n \in \mathbb{N}$. Similarly a sequence $(u_n)_{n \in \mathbb{N}}$ is decreasing (or strictly decreasing) if $u_n \geq u_{n+1}$ (or $u_n > u_{n+1}$), for all $n \in \mathbb{N}$.

If a sequence is increasing (or strictly increasing), decreasing (or strictly decreasing), it is said to be **monotonic** (or **strictly monotonic**).

Example 1.2.1. The sequence $u_n = \frac{2^n - 1}{2^n}$ which starts

$$\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \cdots$$

is increasing. On the other hand, the sequence $v_n = \frac{n+1}{n}$ which starts

$$\frac{2}{1}, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \cdots$$

is decreasing.

1.2.2 Boundedness

Definition 1.2.2. A sequence $(u_n)_{n \in \mathbb{N}}$ is **bounded above** if there is some number M so that for all $n \in \mathbb{N}$, we have $u_n \leq M$. Likewise, a sequence $(u_n)_{n \in \mathbb{N}}$ is **bounded below** if there is some number m so that for every $n \in \mathbb{N}$, we have $u_n \geq m$.

If a sequence is both bounded above and below, the sequence is said to be bounded.

Remark 1.2.1. If a sequence $\{u_n\}_{n=0}^{\infty}$ is increasing it is bounded below by u_0 , and if it is decreasing it is bounded above by u_0 .

Theorem 1.2.1. If the sequence (u_n) is bounded and monotonic, then $\lim_{n\to\infty} u_n$ exists.

1.3 Convergent Sequences

Definition 1.3.1. We say that the sequence $(u_n)_{n \in \mathbb{N}}$ is converge to the scalar l if

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : |u_n - l| < \varepsilon.$$

In this case we write $\lim_{n\to\infty} u_n = l$, (*l* finite). If there is no a finite value *l* such that $\lim_{n\to\infty} u_n = l$, then we say that the limit does not exist, or equivalently that the sequence diverges.

Remark 1.3.1. Any open interval with center *l* contains all the terms of the sequence from a certain rank.

Example 1.3.1. *I*. $u_n = \left(\frac{3}{4}\right)^n$. $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \left(\frac{3}{4}\right)^n = \lim_{n \to +\infty} e^{n \ln\left(\frac{3}{4}\right)} = 0. \text{ So } (u_n) \text{ converges to } 0.$

2. $v_n = (-1)^n$. v_n is a divergent sequence.

3. $w_n = \sin(n)$. The limit of w_n does not exist, so w_n is divergent.

Proposition 1.3.1. *If the sequence* $(u_n)_{n \in \mathbb{N}}$ *is convergent then it has a unique limit.*

Proof 1. Assume that $\lim_{n\to+\infty} u_n = l$, and $\lim_{n\to+\infty} u_n = l'$, we need to show that l = l'.

- $\lim_{n \to +\infty} u_n = l \iff \forall \varepsilon > 0, \ \exists \ n_0 \in \mathbb{N} : \forall \ n \ge n_0 : \ |u_n l| < \frac{\varepsilon}{2}.$ and
- $\lim_{n \to +\infty} u_n = l' \iff \forall \varepsilon > 0, \ \exists n_1 \in \mathbb{N} : \forall n \ge n_1 : |u_n l'| < \frac{\varepsilon}{2}.$

We have $|l - l'| = |l - u_n + u_n - l'| \le |l - u_n| + |u_n - l'| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. So $\forall \varepsilon > 0 : |l - l'| < \varepsilon$, then l = l'.

Proposition 1.3.2. *If the sequence* $(u_n)_{n \in \mathbb{N}}$ *converges to l, then the sequence* $|u_n|$ *converges to* |l|*.*

Proposition 1.3.3. any convergent sequence is bounded.

- **Remark 1.3.2.** If $(u_n)_{n \in \mathbb{N}}$ is increasing and bounded above, then $(u_n)_{n \in \mathbb{N}}$ converges to $l = \sup u_n$.
 - If $(u_n)_{n \in \mathbb{N}}$ is decreasing and bounded below, then $(u_n)_{n \in \mathbb{N}}$ is converges to $l = \inf u_n$.

1.4 The usual rules of limits

If $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ are convergent sequences to *l* and *l'* respectively, and α is any real constant then:

1) $\lim_{n \to +\infty} (u_n + v_n) = l + l',$ 2) $\lim_{n \to +\infty} (u_n \times v_n) = l \times l',$ 3) $\lim_{n \to +\infty} (\alpha u_n) = \alpha l,$ 5) $\lim_{n \to +\infty} \frac{1}{u_n} = \frac{1}{l}, \ l \neq 0,$ 6) $if \ u_n \leq v_n, \ then \ l \leq l',$ 7) $if l = l', \ and \ u_n \leq v_n, \ then \ \lim_{n \to +\infty} w_n = l.$

1.5 Adjacent sequences

Definition 1.5.1. We say that two real sequences $(u_n)_{n \in \mathbb{N}}$, and $(v_n)_{n \in \mathbb{N}}$ are adjacent if they satisfy the following properties:

- 1. $(u_n)_{n \in \mathbb{N}}$ is increasing, and $(v_n)_{n \in \mathbb{N}}$ is decreasing,
- $2. \lim_{n\to\infty}(u_n-v_n)=0.$

Theorem 1.5.1. *If the two sequences* $(u_n)_{n \in \mathbb{N}}$ *and* $(v_n)_{n \in \mathbb{N}}$ *are adjacent then they converge to the same limit.*

Proof. We assume that $(u_n)_{n \in \mathbb{N}}$ is increasing and $(v_n)_{n \in \mathbb{N}}$ is decreasing. Let $w_n = u_n - v_n$, then

$$w_{n+1} - w_n = u_{n+1} - v_{n+1} - u_n + v_n,$$

= $(u_n + 1 - u_n) - (v_{n+1} - v_1)$
 $\geq 0.$

and $\lim_{n\to\infty} w_n = \lim_{n\to\infty} (u_n - v_n) = 0$. Since (w_n) is an increasing sequence and $\lim_{n\to\infty} w_n = 0$, then $\forall n \in \mathbb{N} : w_n \le 0 \Rightarrow u_n \le v_n$.

Therefore, $\forall n \in \mathbb{N}$: $u_0 \le u_n \le v_n \le v_0$. the sequence (u_n) is convergent since it is increasing and bounded above by v_0 , also the sequence (v_n) is convergent, and since $\lim_{n\to\infty} (u_n - v_n) = 0$ we deduce that $\lim_{n\to\infty} u_n = \lim_{n\to\infty} v_n$.

Exercise 1.5.1. Show that the two sequences (u_n) and (v_n) are adjacent:

•
$$u_n = 1 + \frac{1}{n!}$$
, and $v_n = \frac{n}{n+1}$.
• $u_n = \sum_{k=1}^n \frac{1}{k^2}$ and $v_n = u_n + \frac{2}{n+1}$

1.6 Subsequences

It is useful to sometimes consider only some terms of a sequence. A subsequence of $\{u_n\}_{n=1}^{\infty}$ is a sequence that contains only some of the numbers from $\{u_n\}_{n=1}^{\infty}$ in the same order.

Definition 1.6.1. Let $\{u_n\}_{n=1}^{\infty}$ be a sequence. Let $\{n_i\}_{i=1}^{\infty}$ be a strictly increasing sequence of natural numbers, that is $n_i < n_{i+1}$ for all $i \in \mathbb{N}$ (in other words, $n_1 < n_2 < n_3 < \cdots$). The sequence $\{u_{n_i}\}_{i=1}^{\infty}$ is called a subsequence of $\{u_n\}_{n=1}^{\infty}$. So the subsequence is the sequence $u_{n_1}, u_{n_2}, u_{n_3}, \cdots$.

Example 1.6.1. *Consider the sequence*

$$u_n = \left(\frac{1}{n}\right)_{n=1}^{\infty} = \left\{1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}, \cdots\right\},\,$$

(5)

then letting $n_k = 2k$ yields the subsequence

$$u_{2k} = \left(\frac{1}{2k}\right)_{k=1}^{\infty} = \left\{\frac{1}{2}, \frac{1}{4}, \cdots, \frac{1}{2k}, \cdots\right\},\$$

and letting $n_k = 2k + 1$ yields the subsequence

$$u_{2k+1} = \left(\frac{1}{2k+1}\right)_{k=1}^{\infty} = \left\{\frac{1}{3}, \frac{1}{5}, \cdots, \frac{1}{2k+1}, \cdots\right\}.$$

Proposition 1.6.1. If $\{u_n\}_{n=1}^{\infty}$ is a convergent sequence, then every subsequence $\{u_n\}_{i=1}^{\infty}$ is also convergent, and

$$\lim_{n\to+\infty}u_n=\lim_{i\to+\infty}u_{n_i}.$$

Corollary 1.6.1. Let $(u_n)_{n \in \mathbb{N}}$ be a sequence, if it admits a divergent subsequence, or if it admits two subsequences converging to distinct limits, then it diverges.

Theorem 1.6.1. (Bolzano-Weierstrass)

Every bounded sequence has a convergent subsequence.

1.7 Cauchy Sequences

Definition 1.7.1. A real sequence $(u_n)_{n \in \mathbb{N}}$ is called a Cauchy sequence if for every $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that $\forall m, n \in \mathbb{N}$, if $m, n \ge N$ then

$$|u_n - u_m| \leq \varepsilon$$

Proposition 1.7.1. If a sequence is Cauchy, then it is bounded.

Proposition 1.7.2. A sequence of real numbers is Cauchy if and only if it converges.

1.8 Arithmetic sequences

1.8.1 Definition

A simple way to generate a sequence is to start with a number u_0 , and add to it a fixed constant *r*, over and over again. This type of sequence is called an **arithmetic sequence**.

Definition 1.8.1. the sequence $(u_n)_{n \in \mathbb{N}}$ is an arithmetic sequence with first term u_0 and common difference r if and only if for any integer $n \in \mathbb{N}$ we have

$$u_{n+1} = u_n + r,$$
 $(u_n = u_0 + n.r).$

More generally: $u_n = u_p + (n - p).r$.

1.8.2 Sum of n terms

For the arithmetic sequence

$$S_n = u_0 + u_1 + \dots + u_{n-1} = n \cdot \frac{u_0 + u_{n-1}}{2}.$$

1.9 Geometric sequences

1.9.1 Definition

Another simple way of generating a sequence is to start with a number v_0 and repeatedly multiply it by a fixed nonzero constant q. This type of sequence is called a geometric sequence.

Definition 1.9.1. the sequence $(v_n)_{n \in \mathbb{N}}$ is a geometric sequence with first term v_0 and common ratio $q \in \mathbb{R}^*$ if and only if for any integer $n \in \mathbb{N}$ we have

$$v_{n+1} = q.v_n,$$
 $(v_n = v_0.q^n).$

More generally: $v_n = v_p \cdot q^{n-p}$.

1.9.2 Sum of n terms

For a geometric sequence, if $S_n = 1 + q + q^2 + \dots + q^n$, then

$$S_n = \begin{cases} n+1 & si \quad q = 1, \\ \frac{1-q^{n+1}}{1-q} & si \quad q \neq 1. \end{cases}$$