08/05/2022 06:57 Python_Basics_With_Numpy_v3a - Jupyter Notebook

Python Basics with Numpy

Welcome to your first assignment. This exercise gives you a brief introduction to Python. Even if you've
used Python before, this will help familiarize you with functions we'll need.

Instructions:

» You will be using Python 3.

« Avoid using for-loops and while-loops, unless you are explicitly told to do so.

» Do not modify the (# GRADED FUNCTION [function name]) comment in some cells. Your work would
not be graded if you change this. Each cell containing that comment should only contain one function.

« After coding your function, run the cell right below it to check if your result is correct.

After this assignment you will:

« Be able to use iPython Notebooks

« Be able to use numpy functions and numpy matrix/vector operations
« Understand the concept of "broadcasting"

« Be able to vectorize code

Let's get started!

About iPython Notebooks

iPython Notebooks are interactive coding environments embedded in a webpage. You will be using
iPython notebooks in this class. You only need to write code between the ### START CODE HERE ###
and ### END CODE HERE ### comments. After writing your code, you can run the cell by either pressing
"SHIFT"+"ENTER" or by clicking on "Run Cell" (denoted by a play symbol) in the upper bar of the
notebook.

We will often specify "(= X lines of code)" in the comments to tell you about how much code you need to
write. It is just a rough estimate, so don't feel bad if your code is longer or shorter.

Exercise: Set testto "Hello World" in the cell below to print "Hello World" and run the two cells below.

Entrée [1]: ### START CODE HERE ### (= 1 line of code)
test = "Hello World"
END CODE HERE

Entrée [2]: print ("test: " + test)

test: Hello World
Expected output: test: Hello World

What you need to remember: - Run your cells using SHIFT+ENTER (or "Run cell") - Write code in the
designated areas using Python 3 only - Do not modify the code outside of the designated areas

1 - Building basic functions with numpy

localhost:8888/notebooks/Python Basics with Numpy/Python_Basics_With_Numpy_v3a.ipynb 1/15

08/05/2022 06:57 Python_Basics_With_Numpy_v3a - Jupyter Notebook

Numpy is the main package for scientific computing in Python. It is maintained by a large community

as np.exp, np.log, and np.reshape. You will need to know how to use these functions for future
assignments.

1.1 - sigmoid function, np.exp()

Before using np.exp(), you will use math.exp() to implement the sigmoid function. You will then see why
np.exp() is preferable to math.exp().

Exercise: Build a function that returns the sigmoid of a real number x. Use math.exp(x) for the exponential
function.

Reminder: sigmoid(x) = 1+le_x

function used not only in Machine Learning (Logistic Regression), but also in Deep Learning.

is sometimes also known as the logistic function. It is a non-linear

sig(t
— Slg(t) = H_% 1.0 g()
0.8
0.6
0.
0.2
t
T T
-8 —6 —4 -2 2 4 6 8

To refer to a function belonging to a specific package you could call it using package_name.function().
Run the code below to see an example with math.exp().

localhost:8888/notebooks/Python Basics with Numpy/Python_Basics_With_Numpy_v3a.ipynb 2/15

http://www.numpy.org/

08/05/2022 06:57

Entrée [3]:

Entrée [4]:

Out[4]:

Entrée [5]:

Python_Basics_With_Numpy_v3a - Jupyter Notebook
GRADED FUNCTION: basic_sigmoid
import math

def basic_sigmoid(x):

Compute sigmoid of x.

Arguments:
X -- A scalar

Return:
s -- sigmoid(x)

non

###t START CODE HERE ### (= 1 Line of code)
s = 1/(1+math.exp(-x))
END CODE HERE

return s

basic_sigmoid(3)

0.9525741268224334

Expected Output:

** basic_sigmoid(3) ** 0.9525741268224334

Actually, we rarely use the "math" library in deep learning because the inputs of the functions are real
numbers. In deep learning we mostly use matrices and vectors. This is why numpy is more useful.

One reason why we use "numpy" instead of "math" in Deep Learning
x = [1, 2, 3]
basic_sigmoid(x) # you will see this give an error when you run it, because x is a vect

TypeError Traceback (most recent call last)
<ipython-input-5-8ccefa5bf989> in <module>

1 ### One reason why we use "numpy" instead of "math" in Deep Learning ###

2 x = [1, 2, 3]
----> 3 basic_sigmoid(x) # you will see this give an error when you run it, because x
is a vector.

<ipython-input-3-a94180fb1694> in basic_sigmoid(x)

15

16 ### START CODE HERE ### (= 1 line of code)
---> 17 s = 1/(1+math.exp(-x))

18 ### END CODE HERE ###

19

TypeError: bad operand type for unary -: 'list’

In fact, if x = (x1, X2, ..., X,) is a row vector then np. exp(x) will apply the exponential function to every
element of x. The output will thus be: np. exp(x) = (¥, e*2,...,e*n

localhost:8888/notebooks/Python Basics with Numpy/Python_Basics_With_Numpy_v3a.ipynb 3/15

08/05/2022 06:57 Python_Basics_With_Numpy_v3a - Jupyter Notebook

Entrée [6]: import numpy as np

example of np.exp
x = np.array([1, 2, 3])
print(np.exp(x)) # result is (exp(1), exp(2), exp(3))

[2.71828183 7.3890561 20.08553692]

C:\ProgrambData\Anaconda3\envs\tf-gpu\lib\site-packages\numpy_distributor_init.py:32:
UserWarning: loaded more than 1 DLL from .libs:
C:\ProgrambData\Anaconda3\envs\tf-gpu\lib\site-packages\numpy\.libs\libopenblas.TXA6YQ
SD3GCQQC22GEQ54J2UDCXDXHWN . gfortran-win_amd64.d1l1
C:\ProgrambData\Anaconda3\envs\tf-gpu\lib\site-packages\numpy\.libs\libopenblas.WCDINK
7YVMPZQ2ME2ZZHJJRJI3JIKNDB7.gfortran-win_amd64.dl1l

stacklevel=1)

Furthermore, if x is a vector, then a Python operation suchas s = x + 3 ors = % will output s as a
vector of the same size as x.

Entrée [7]: # example of vector operation
X = np.array([1, 2, 3])
print (x + 3)

[45 6]

Any time you need more info on a numpy function, we encourage you to look at the official documentation
(https://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.exp.html).

You can also create a new cell in the notebook and write np.exp? (for example) to get quick access to
the documentation.

Exercise: Implement the sigmoid function using numpy.

Instructions: x could now be either a real number, a vector, or a matrix. The data structures we use in
numpy to represent these shapes (vectors, matrices...) are called numpy arrays. You don't need to know

more for now.
1

X1 I+e1
1
. . . . X Ty
For x € R", sigmoid(x) = sigmoid 2 =] the (D)
X, 1
I+e=xn

localhost:8888/notebooks/Python Basics with Numpy/Python_Basics_With_Numpy_v3a.ipynb 4/15

https://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.exp.html

08/05/2022 06:57 Python_Basics_With_Numpy_v3a - Jupyter Notebook
Entrée [8]: # GRADED FUNCTION: sigmoid
import numpy as np # this means you can access numpy functions by writing np.function(,
def sigmoid(x):

Compute the sigmoid of x

Arguments:
X -- A scalar or numpy array of any size

Return:
s -- sigmoid(x)

non

START CODE HERE ### (= 1 Line of code)
s = 1/(1+np.exp(-x))
END CODE HERE
return s
Entrée [9]: x = np.array([1, 2, 3])

sigmoid(x)

Out[9]: array([0.73105858, 0.88079708, ©.95257413])

Expected Output:

sigmoid([1,2,3]) array([0.73105858, 0.88079708, 0.95257413])

1.2 - Sigmoid gradient

As you've seen in lecture, you will need to compute gradients to optimize loss functions using
backpropagation. Let's code your first gradient function.

Exercise: Implement the function sigmoid_grad() to compute the gradient of the sigmoid function with
respect to its input x. The formula is:

sigmoid_derivative(x) = ¢’ (x) = o(x)(1 — o(x)) 2)
You often code this function in two steps:

1. Set s to be the sigmoid of x. You might find your sigmoid(x) function useful.
2. Compute ¢’ (x) = s(1 —)

localhost:8888/notebooks/Python Basics with Numpy/Python_Basics_With_Numpy_v3a.ipynb 5/15

08/05/2022 06:57

Entrée [10]:

Entrée [11]:

Python_Basics_With_Numpy_v3a - Jupyter Notebook
GRADED FUNCTION: sigmoid_derivative

def sigmoid_derivative(x):

nun

Compute the gradient (also called the slope or derivative) of the sigmoid function
You can store the output of the sigmoid function into variables and then use it to

Arguments:
X -- A scalar or numpy array

Return:
ds -- Your computed gradient.

nun

START CODE HERE ### (= 2 lines of code)
s = sigmoid(x)

ds = s*(1-s)

END CODE HERE

return ds

x = np.array([1, 2, 3])
print ("sigmoid_derivative(x) =

+ str(sigmoid_derivative(x)))

sigmoid_derivative(x) = [0.19661193 0.10499359 ©.04517666]

Expected Output:

sigmoid_derivative([1,2,3]) [0.19661193 0.10499359 0.04517666]

1.3 - Reshaping arrays

Two common numpy functions used in deep learning are np.shape
(https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html) and np.reshape()
(https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html).

« X.shape is used to get the shape (dimension) of a matrix/vector X.
« X.reshape(...) is used to reshape X into some other dimension.

For example, in computer science, an image is represented by a 3D array of shape

(length, height, depth = 3). However, when you read an image as the input of an algorithm you convert
it to a vector of shape (length * height % 3, 1). In other words, you "unroll", or reshape, the 3D array into
a 1D vector.

L.

|

Exercise: Implement image2vector() thattakes an input of shape (length, height, 3) and returns a
vector of shape (length*height*3, 1). For example, if you would like to reshape an array v of shape (a, b, ¢)
into a vector of shape (a*b,c) you would do:

v = v.reshape((v.shape[@]*v.shape[1l], v.shape[2])) # v.shape[@] = a ; v.shape
[1] = b ; v.shape[2] = c

« Please don't hardcode the dimensions of image as a constant. Instead look up the quantities you
need with image.shape[0], etc.

localhost:8888/notebooks/Python Basics with Numpy/Python_Basics_With_Numpy_v3a.ipynb 6/15

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html

08/05/2022 06:57

Python_Basics_With_Numpy_v3a - Jupyter Notebook

Entrée [12]: # GRADED FUNCTION: image2vector
def image2vector(image):

nnn

Argument:

image -- a numpy array of shape (length, height, depth)

Returns:

v -- a vector of shape (length*height*depth, 1)

wun

###t START CODE HERE ### (= 1 Line of code)
v = image.reshape((image.shape[0]*image.shape[1]*image.shape[2], 1))
END CODE HERE

return v

Entrée [13]: # This is a 3 by 3 by 2 array, typically images will be (num_px_x, num_px_y,3) where 3
image = np.array([[[©.67826139, ©.29380381],

print ("image2vector(image) =

[0.90714982,
[0.4215251 ,

[[©.92814219,
[©.85304703,
[©.19981397,

[[©.60659855,
[0.10820313,
[0.34144279,

print(image.shape)

0
0

0

(o]

(O

.52835647],
.450175511],

.96677647],
.52351845],
.27417313]],

.00533165],
.49978937],
.94630077117)

+ str(image2vector(image)))

image2vector(image) = [[0.67826139]

[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.
[0.

(3,

29380381]
90714982]
52835647
4215251]
45017551]
92814219]
96677647]
85304703]
52351845]
19981397]
27417313]
60659855]
00533165
10820313]
49978937]
34144279
94630077]]
3, 2)

Expected Output:

image2vector(image)

[0.67826139] [0.29380381] [0.90714982] [0.52835647] [0.4215251] [0.45017551] [
0.92814219] [0.96677647] [0.85304703] [0.52351845] [0.19981397] [0.27417313] [
0.60659855] [0.00533165] [0.10820313] [0.49978937] [0.34144279] [0.94630077]]

localhost:8888/notebooks/Python Basics with Numpy/Python_Basics_With_Numpy_v3a.ipynb

7/15

08/05/2022 06:57 Python_Basics_With_Numpy_v3a - Jupyter Notebook

1.4 - Normalizing rows

Another common technique we use in Machine Learning and Deep Learning is to normalize our data. It
often leads to a better performance because gradient descent converges faster after normalization. Here,
by normalization we mean changing x to ﬁ (dividing each row vector of x by its norm).

For example, if

0 3 4
X = 3
R ®
then
5
x|l = np.linalg. norm(x, axis = 1, keepdims = True) = [\/56] “4)
and
3 4
' O 5 3
x_normalized = —— =| , 6 4)
llx]| AR A

Note that you can divide matrices of different sizes and it works fine: this is called broadcasting and you're
going to learn about it in part 5.

Exercise: Implement normalizeRows() to normalize the rows of a matrix. After applying this function to an
input matrix x, each row of x should be a vector of unit length (meaning length 1).

Entrée [14]: # GRADED FUNCTION: normalizeRows

def normalizeRows(x):

wnn

Implement a function that normalizes each row of the matrix x (to have unit length

Argument:

X -- A numpy matrix of shape (n, m)

Returns:

X -- The normalized (by row) numpy matrix. You are allowed to modify x.

#t#t#t START CODE HERE ### (= 2 lines of code)
Compute x_norm as the norm 2 of x. Use np.linalg.norm(..., ord = 2, axis = ..., |
x_norm = np.linalg.norm(x, ord = 2, axis=1, keepdims=True)

Divide x by its norm.
X = x/x_norm
END CODE HERE

return x

Entrée [15]: X = np.array([

[0) 3) 4‘]:

[1, 6, 4]1])
print("normalizeRows(x) =

print(x.shape)

+ str(normalizeRows(x)))

normalizeRows(x) = [[O. 0.6 0.8]
[0.13736056 ©.82416338 ©.54944226]]
(2, 3)

localhost:8888/notebooks/Python Basics with Numpy/Python_Basics_With_Numpy_v3a.ipynb 8/15

08/05/2022 06:57

Python_Basics_With_Numpy_v3a - Jupyter Notebook

Expected Output:

**normalizeRows(x)*™* [[0. 0.6 0.8][0.13736056 0.82416338 0.54944226]]

Note: In normalizeRows(), you can try to print the shapes of x_norm and x, and then rerun the
assessment. You'll find out that they have different shapes. This is normal given that x_norm takes the
norm of each row of x. So x_norm has the same number of rows but only 1 column. So how did it work
when you divided x by x_norm? This is called broadcasting and we'll talk about it now!

1.5 - Broadcasting and the softmax function

A very important concept to understand in numpy is "broadcasting". It is very useful for performing
mathematical operations between arrays of different shapes. For the full details on broadcasting, you can
read the official broadcasting_ documentation
(http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html).

Exercise: Implement a softmax function using numpy. You can think of softmax as a normalizing function
used when your algorithm needs to classify two or more classes. You will learn more about softmax in the
second course of this specialization.

Instructions:

for x € R>", softmax(x) = softmax([xl X5 Xp]) = [Ze_' ;x, ze_ zx,»
J J

for a matrix x € R™", x; ; maps to the element in the i row and j column of x, thus we have

exll 512 13

X11 X12 X13 .- Xqp X el 3, et ¥, el
el exX22 X3

softmax(x) = softmax X2r X2 X3 e Xop || ¥ &Y ¥ Y ¥ Y
Xml Xm2 Xm3 . Xmn ol . o

- Z“j e 2, emi Zj eXmj

Note

Note that later in the course, you'll see "m" used to represent the "number of training examples”, and each
training example is in its own column of the matrix.

Also, each feature will be in its own row (each row has data for the same feature).

Softmax should be performed for all features of each training example, so softmax would be performed on
the columns (once we switch to that representation later in this course).

However, in this coding practice, we're just focusing on getting familiar with Python, so we're using the
common math notation m X n
where m is the number of rows and n is the number of columns.

localhost:8888/notebooks/Python Basics with Numpy/Python_Basics_With_Numpy_v3a.ipynb 9/15

http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

08/05/2022 06:57 Python_Basics_With_Numpy_v3a - Jupyter Notebook

Entrée [16]: # GRADED FUNCTION: softmax

def softmax(x):
"""Calculates the softmax for each row of the input x.

Your code should work for a row vector and also for matrices of shape (m,n).

Argument:
X -- A numpy matrix of shape (m,n)

Returns:
s -- A numpy matrix equal to the softmax of x, of shape (m,n)

nun

START CODE HERE ### (= 3 lines of code)
Apply exp() element-wise to x. Use np.exp(...).
X_exp = np.exp(x)

Create a vector x_sum that sums each row of x_exp. Use np.sum(..., axis = 1, keej
X_sum = np.sum(x_exp, axis = 1, keepdims = True)

Compute softmax(x) by dividing x_exp by x_sum. It should automatically use numpy
s = X_exp/x_sum

END CODE HERE

return s

Entrée [17]: x = np.array([
[9, 2, 5, 6, 0],
[7, 5, @, @ ,0]])
print("softmax(x) = " + str(softmax(x)))

softmax(x) = [[9.80897665e-01 8.94462891e-04 1.79657674e-02 1.21052389e-04
1.21052389e-04]
[8.78679856e-01 1.18916387e-01 8.01252314e-04 8.01252314e-04
8.01252314e-04]]

Expected Output:
s oftmax(x)™ [[9.80897665e-01 8.94462891e-04 1.79657674e-02 1.21052389e-04 1.21052389e-04] [8.78679856¢e-
01 1.18916387e-01 8.01252314e-04 8.01252314e-04 8.01252314e-04]]
Note:

« If you print the shapes of x_exp, x_sum and s above and rerun the assessment cell, you will see that
x_sum is of shape (2,1) while x_exp and s are of shape (2,5). x_exp/x_sum works due to python
broadcasting.

Congratulations! You now have a pretty good understanding of python numpy and have implemented a

few useful functions that you will be using in deep learning.

What you need to remember: - np.exp(x) works for any np.array x and applies the exponential function
to every coordinate - the sigmoid function and its gradient - image2vector is commonly used in deep
learning - np.reshape is widely used. In the future, you'll see that keeping your matrix/vector dimensions

localhost:8888/notebooks/Python Basics with Numpy/Python_Basics_With_Numpy_v3a.ipynb 10/15

08/05/2022 06:57 Python_Basics_With_Numpy_v3a - Jupyter Notebook

straight will go toward eliminating a lot of bugs. - numpy has efficient built-in functions - broadcasting is
extremely useful

2) Vectorization

In deep learning, you deal with very large datasets. Hence, a non-computationally-optimal function can
become a huge bottleneck in your algorithm and can result in a model that takes ages to run. To make
sure that your code is computationally efficient, you will use vectorization. For example, try to tell the
difference between the following implementations of the dot/outer/elementwise product.

localhost:8888/notebooks/Python Basics with Numpy/Python_Basics_With_Numpy_v3a.ipynb 11/15

08/05/2022 06:57 Python_Basics_With_Numpy_v3a - Jupyter Notebook

Entrée [18]: import time

x1=1[9,2,5 0,0,7,5,0,0,0,9, 2,5, 0, 0]
x2=1[9,2,2,9,0,9,2,5 0,0,9, 2,5, 0, 0]

))

CLASSIC DOT PRODUCT OF VECTORS IMPLEMENTATION
tic = time.process_time()
dot = ©
for i in range(len(x1)):
dot+= x1[i]*x2[1]
toc = time.process_time()
print ("dot = " + str(dot) + "\n ----- Computation time =

CLASSIC OUTER PRODUCT IMPLEMENTATION
tic = time.process_time()

" + str(1ee0*(toc - tic)) +

outer = np.zeros((len(x1l),len(x2))) # we create a lLen(x1)*lLen(x2) matrix with only zer

for i in range(len(x1)):
for j in range(len(x2)):
outer[i,j] = x1[i]*x2[]]
toc = time.process_time()

print ("outer = " + str(outer) + "\n ----- Computation time

CLASSIC ELEMENTWISE IMPLEMENTATION
tic = time.process_time()
mul = np.zeros(len(x1))
for i in range(len(x1)):
mul[i] = x1[i]*x2[1i]
toc = time.process_time()

print ("elementwise multiplication = " + str(mul) + "\n -----

CLASSIC GENERAL DOT PRODUCT IMPLEMENTATION

W = np.random.rand(3,len(x1)) # Random 3*len(x1) numpy array

tic = time.process_time()
gdot = np.zeros(W.shape[@])
for i in range(W.shape[9]):
for j in range(len(x1)):
gdot[i] += W[i,j]*x1[]]
toc = time.process_time()
print ("gdot = " + str(gdot) + "\n ----- Computation time

dot = 278
————— Computation time = ©.0ms

outer = [[81. 18. 18. 81. ©. 81. 18. 45. ©. ©. 81. 18.
[18. 4. 4. 18. ©. 18. 4. 10. ©. 0. 18. 4. 1l0. ©
[45. 1. 10. 45. ©. 45. 10. 25. ©. 0. 45. 10. 25. ©
[6. ©. ©. ©. ©. ©. ©. ©. ©. ©. 0. 0. 0. 0
[6. ©. ©. ©. ©. ©. ©. ©. ©. ©. 0. 0. 0. 0
[63. 14. 14. 63. ©. 63. 14. 35. ©. 0. 63. 14. 35. ©
[45. 1. 10. 45. ©. 45. 10. 25. ©. 0. 45. 10. 25. ©
[6. ©. ©. ©. ©. ©. ©. ©. ©. ©. 0. 0. 0. 0
[6. ©. ©. ©. ©. ©. ©. ©. ©. ©. 0. 0. 0. 0
[6. ©. ©. ©. ©. ©. ©. ©. ©. ©. 0. 0. 0. 0
[81. 18. 18. 81. ©. 81. 18. 45. ©. 0. 81. 18. 45. ©
[18. 4. 4. 18. ©. 18. 4. 10. 0. 0. 18. 4. 10. ©
[45. 10. 1@. 45. 0. 45. 10. 25. ©. 0. 45. 10. 25. ©
[6. ©. ©. ©. ©. ©. ©. ©. ©. 0©. 0©. 0O0. 0. 0
[6. ©. ©. ©. ©. ©. ©. ©. ©. 0©. O©. 0. 0. 0
----- Computation time = ©.0ms

elementwise multiplication = [81. 4. 10. ©. 0. 63. 10

0. 0.]

localhost:8888/notebooks/Python Basics with Numpy/Python_Basics_With_Numpy_v3a.ipynb

I
v

[ORNORIO R R IR RO RO RO E ORI R)

Computation time

"+ str(1000*(toc - tic)]

S

" + str(1000*(toc - tic)) -

[Sy S S oy S S Ny S Y STy S o Sy S [

o

0.]

. 81.

. 25.

12/15

08/05/2022 06:57

Entrée [19]:

Python_Basics_With_Numpy_v3a - Jupyter Notebook

----- Computation time = ©.0ms
gdot = [20.93811308 28.24612439 12.74192105]
----- Computation time = ©.0ms

x1=1[9, 2,5 0,0, 7,5,0,0,0,9, 2,5, 0, 0]
=[9 2, 2,9,0,9,2,5,0, 0,9, 2,5, 0, 0]

VECTORIZED DOT PRODUCT OF VECTORS

tic = time.process_time()

dot = np.dot(x1,x2)

toc = time.process_time()

print ("dot = " + str(dot) + "\n ----- Computation time = " + str(1000*(toc - tic)) +

VECTORIZED OUTER PRODUCT
tic = time.process_time()

outer = np.outer(xl,x2)

toc = time.process_time()

print ("outer = " + str(outer) + "\n ----- Computation time = " + str(1000*(toc - tic)

VECTORIZED ELEMENTWISE MULTIPLICATION

tic = time.process_time()

mul = np.multiply(x1,x2)

toc = time.process_time()

print ("elementwise multiplication = " + str(mul) + "\n ----- Computation time = " + sfi

VECTORIZED GENERAL DOT PRODUCT

tic = time.process_time()

dot = np.dot(W,x1)

toc = time.process_time()

print ("gdot = " + str(dot) + "\n ----- Computation time = " + str(1000*(toc - tic)) +

dot = 278
----- Computation time = ©.0ms

outer = [[81 18 18 81 © 81 18 45 © © 81 18 45 0 0]
[18 4 418 018 410 © 018 410 © 0]
[45 10 10 45 © 45 10 25 © © 4510 25 © 0]
[0 6 6 6 06 0 0 0 0 0 0 0 0 0 0]
[0 6 6 6 06 0 0 0 0 0 0 0 0 0 0]
[63 14 14 63 © 63 14 35 © © 63 14 35 © 0]
[45 10 10 45 © 45 10 25 © © 4510 25 © 0]
[0 6 6 6 6 0 0 0 0 0 0 0 0 0 0]
[0 6 6 6 6 0 0 0 0 0 0 0 0 0 0]
[0 6 6 6 6 0 0 0 0 0 0 0 0 0 0]
[81 18 18 81 © 81 1845 © © 81 18 45 © 0]
[18 4 418 018 410 © 018 410 © 0]
[45 10 16 45 © 45 10 25 © © 4510 25 © 0]
[0 6 6 6 6 06 0 0 0 0 0 0 0 0 0]
[6 6 6 6 06 0 00 0 0 0 0 0 0 0]]

————— Computation time = ©.0ms

elementwise multiplication = [81 410 © ©63 10 © © 081 425 0 0]
————— Computation time = ©.0ms

gdot = [20.93811308 28.24612439 12.74192105]
————— Computation time = ©.0ms

As you may have noticed, the vectorized implementation is much cleaner and more efficient. For bigger
vectors/matrices, the differences in running time become even bigger.

localhost:8888/notebooks/Python Basics with Numpy/Python_Basics_With_Numpy_v3a.ipynb 13/15

08/05/2022 06:57 Python_Basics_With_Numpy_v3a - Jupyter Notebook

Note that np.dot() performs a matrix-matrix or matrix-vector multiplication. This is different from
np.multiply() andthe * operator (which is equivalentto .* in Matlab/Octave), which performs an
element-wise multiplication.

2.1 Implement the L1 and L2 loss functions

Exercise: Implement the numpy vectorized version of the L1 loss. You may find the function abs(x)
(absolute value of x) useful.

Reminder:

« The loss is used to evaluate the performance of your model. The bigger your loss is, the more
different your predictions () are from the true values (). In deep learning, you use optimization
algorithms like Gradient Descent to train your model and to minimize the cost.

» L1 loss is defined as:

m
LGy =) -3 (6)
i=0
Entrée [20]: # GRADED FUNCTION: L1
def L1(yhat, y):

Arguments:

yhat -- vector of size m (predicted labels)

y -- vector of size m (true labels)

Returns:

loss -- the value of the L1 loss function defined above

##t# START CODE HERE ### (= 1 Line of code)
loss = np.sum(np.abs(yhat-y))
END CODE HERE

return loss

Entrée [21]: yhat = np.array([.9, 0.2, 0.1, .4, .9])
y = np.array([1, @, 0, 1, 1])
print("L1l = " + str(L1l(yhat,y)))

Expected Output:

<tr>
<td> *¥*L1** </td>
<td> 1.1 </td>
</tr>

Exercise: Implement the numpy vectorized version of the L2 loss. There are several way of implementing
the L2 loss but you may find the function np.dot() useful. As a reminder, if x = [x;, X3, ..., X,], then

-\ 2
np.dot(x,x) —-E:ﬁi)xi.
localhost:8888/notebooks/Python Basics with Numpy/Python_Basics_With_Numpy_v3a.ipynb 14/15

08/05/2022 06:57 Python_Basics_With_Numpy_v3a - Jupyter Notebook

o L2 loss is defined as

m
A i NV
L@ y» =)0 -3 (7)
i=0
Entrée [22]: # GRADED FUNCTION: L2
def L2(yhat, y):

Arguments:

yhat -- vector of size m (predicted labels)

y -- vector of size m (true labels)

Returns:

loss -- the value of the L2 loss function defined above

wun

START CODE HERE ### (= 1 line of code)
loss = np.sum((yhat-y)**2)
END CODE HERE
return loss
Entrée [23]: yhat = np.array([.9, 0.2, 0.1, .4, .9])

y = np.array([1, 0, 0, 1, 1])
print("L2 = " + str(L2(yhat,y)))

L2 = 0.43

Expected Output:

L2 0.43

Congratulations on completing this assignment. We hope that this little warm-up exercise helps you in the
future assignments, which will be more exciting and interesting!

What to remember: - Vectorization is very important in deep learning. It provides computational
efficiency and clarity. - You have reviewed the L1 and L2 loss. - You are familiar with many numpy
functions such as np.sum, np.dot, np.multiply, np.maximum, etc...

localhost:8888/notebooks/Python Basics with Numpy/Python_Basics_With_Numpy_v3a.ipynb 15/15

