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Python Basics with Numpy
Welcome to your first assignment. This exercise gives you a brief introduction to Python. Even if you've
used Python before, this will help familiarize you with functions we'll need.

Instructions:

You will be using Python 3.
Avoid using for-loops and while-loops, unless you are explicitly told to do so.
Do not modify the (# GRADED FUNCTION [function name]) comment in some cells. Your work would
not be graded if you change this. Each cell containing that comment should only contain one function.
After coding your function, run the cell right below it to check if your result is correct.

After this assignment you will:

Be able to use iPython Notebooks
Be able to use numpy functions and numpy matrix/vector operations
Understand the concept of "broadcasting"
Be able to vectorize code

Let's get started!

About iPython Notebooks
iPython Notebooks are interactive coding environments embedded in a webpage. You will be using
iPython notebooks in this class. You only need to write code between the ### START CODE HERE ###
and ### END CODE HERE ### comments. After writing your code, you can run the cell by either pressing
"SHIFT"+"ENTER" or by clicking on "Run Cell" (denoted by a play symbol) in the upper bar of the
notebook.

We will often specify "(≈ X lines of code)" in the comments to tell you about how much code you need to
write. It is just a rough estimate, so don't feel bad if your code is longer or shorter.

Exercise: Set test to "Hello World"  in the cell below to print "Hello World" and run the two cells below.

Entrée [1]:

Entrée [2]:

Expected output:
test: Hello World

**What you need to remember**:
- Run your cells using SHIFT+ENTER (or "Run cell")
- Write code in the
designated areas using Python 3 only
- Do not modify the code outside of the designated areas

1 - Building basic functions with numpy

test: Hello World


### START CODE HERE ### (≈ 1 line of code)
test = "Hello World"
### END CODE HERE ###

print ("test: " + test)
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Numpy is the main package for scientific computing in Python. It is maintained by a large community
(www.numpy.org (http://www.numpy.org)). In this exercise you will learn several key numpy functions such
as np.exp, np.log, and np.reshape. You will need to know how to use these functions for future
assignments.

1.1 - sigmoid function, np.exp()
Before using np.exp(), you will use math.exp() to implement the sigmoid function. You will then see why
np.exp() is preferable to math.exp().

Exercise: Build a function that returns the sigmoid of a real number x. Use math.exp(x) for the exponential
function.

Reminder:
  is sometimes also known as the logistic function. It is a non-linear
function used not only in Machine Learning (Logistic Regression), but also in Deep Learning.

To refer to a function belonging to a specific package you could call it using package_name.function().
Run the code below to see an example with math.exp().

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1

1+𝑒−𝑥

http://www.numpy.org/
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Entrée [3]:

Entrée [4]:

Expected Output:

** basic_sigmoid(3) ** 0.9525741268224334

Actually, we rarely use the "math" library in deep learning because the inputs of the functions are real
numbers. In deep learning we mostly use matrices and vectors. This is why numpy is more useful.

Entrée [5]:

In fact, if  is a row vector then  will apply the exponential function to every
element of x. The output will thus be: 

𝑥 = ( , , . . . , )𝑥1 𝑥2 𝑥𝑛 𝑛𝑝. 𝑒𝑥𝑝(𝑥)

𝑛𝑝. 𝑒𝑥𝑝(𝑥) = ( , , . . . , )𝑒𝑥1 𝑒𝑥2 𝑒𝑥𝑛

Out[4]: 0.9525741268224334

---------------------------------------------------------------------------

TypeError                                 Traceback (most recent call last)

<ipython-input-5-8ccefa5bf989> in <module>

     1 ### One reason why we use "numpy" instead of "math" in Deep Learning ###

     2 x = [1, 2, 3]


----> 3 basic_sigmoid(x) # you will see this give an error when you run it, because x 
is a vector.


<ipython-input-3-a94180fb1694> in basic_sigmoid(x)

    15 

    16     ### START CODE HERE ### (≈ 1 line of code)


---> 17     s = 1/(1+math.exp(-x))

    18     ### END CODE HERE ###

    19 


TypeError: bad operand type for unary -: 'list'


# GRADED FUNCTION: basic_sigmoid
​
import math
​
def basic_sigmoid(x):
    """
    Compute sigmoid of x.
​
    Arguments:
    x -- A scalar
​
    Return:
    s -- sigmoid(x)
    """
    
    ### START CODE HERE ### (≈ 1 line of code)
    s = 1/(1+math.exp(-x))
    ### END CODE HERE ###
    
    return s

basic_sigmoid(3)

### One reason why we use "numpy" instead of "math" in Deep Learning ###
x = [1, 2, 3]
basic_sigmoid(x) # you will see this give an error when you run it, because x is a vect
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Entrée [6]:

Furthermore, if x is a vector, then a Python operation such as  or  will output s as a
vector of the same size as x.

𝑠 = 𝑥 + 3 𝑠 = 1
𝑥

Entrée [7]:

Any time you need more info on a numpy function, we encourage you to look at the official documentation
(https://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.exp.html).

You can also create a new cell in the notebook and write np.exp?  (for example) to get quick access to
the documentation.

Exercise: Implement the sigmoid function using numpy.

Instructions: x could now be either a real number, a vector, or a matrix. The data structures we use in
numpy to represent these shapes (vectors, matrices...) are called numpy arrays. You don't need to know
more for now.

For 𝑥 ∈ , 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 =ℝ
𝑛










𝑥1

𝑥2

. . .

𝑥𝑛




















1

1+𝑒−𝑥1

1

1+𝑒−𝑥2

. . .
1

1+𝑒−𝑥𝑛











(1)

[ 2.71828183  7.3890561  20.08553692]


C:\ProgramData\Anaconda3\envs\tf-gpu\lib\site-packages\numpy\_distributor_init.py:32: 
UserWarning: loaded more than 1 DLL from .libs:

C:\ProgramData\Anaconda3\envs\tf-gpu\lib\site-packages\numpy\.libs\libopenblas.TXA6YQ
SD3GCQQC22GEQ54J2UDCXDXHWN.gfortran-win_amd64.dll

C:\ProgramData\Anaconda3\envs\tf-gpu\lib\site-packages\numpy\.libs\libopenblas.WCDJNK
7YVMPZQ2ME2ZZHJJRJ3JIKNDB7.gfortran-win_amd64.dll

 stacklevel=1)


[4 5 6]


import numpy as np
​
# example of np.exp
x = np.array([1, 2, 3])
print(np.exp(x)) # result is (exp(1), exp(2), exp(3))

# example of vector operation
x = np.array([1, 2, 3])
print (x + 3)

https://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.exp.html
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Entrée [8]:

Entrée [9]:

Expected Output:

**sigmoid([1,2,3])** array([ 0.73105858, 0.88079708, 0.95257413])

1.2 - Sigmoid gradient
As you've seen in lecture, you will need to compute gradients to optimize loss functions using
backpropagation. Let's code your first gradient function.

Exercise: Implement the function sigmoid_grad() to compute the gradient of the sigmoid function with
respect to its input x. The formula is:

You often code this function in two steps:

1. Set s to be the sigmoid of x. You might find your sigmoid(x) function useful.
2. Compute 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑_𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒(𝑥) = (𝑥) = 𝜎(𝑥)(1 − 𝜎(𝑥))𝜎′ (2)

(𝑥) = 𝑠(1 − 𝑠)𝜎′

Out[9]: array([0.73105858, 0.88079708, 0.95257413])

# GRADED FUNCTION: sigmoid
​
import numpy as np # this means you can access numpy functions by writing np.function()
​
def sigmoid(x):
    """
    Compute the sigmoid of x
​
    Arguments:
    x -- A scalar or numpy array of any size
​
    Return:
    s -- sigmoid(x)
    """
    
    ### START CODE HERE ### (≈ 1 line of code)
    s = 1/(1+np.exp(-x))
    ### END CODE HERE ###
    
    return s

x = np.array([1, 2, 3])
sigmoid(x)
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Entrée [10]:

Entrée [11]:

Expected Output:

**sigmoid_derivative([1,2,3])** [ 0.19661193 0.10499359 0.04517666]

1.3 - Reshaping arrays
Two common numpy functions used in deep learning are np.shape
(https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html) and np.reshape()
(https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html).

X.shape is used to get the shape (dimension) of a matrix/vector X.
X.reshape(...) is used to reshape X into some other dimension.

For example, in computer science, an image is represented by a 3D array of shape 
. However, when you read an image as the input of an algorithm you convert

it to a vector of shape . In other words, you "unroll", or reshape, the 3D array into
a 1D vector.

Exercise: Implement image2vector()  that takes an input of shape (length, height, 3) and returns a
vector of shape (length*height*3, 1). For example, if you would like to reshape an array v of shape (a, b, c)
into a vector of shape (a*b,c) you would do:

v = v.reshape((v.shape[0]*v.shape[1], v.shape[2])) # v.shape[0] = a ; v.shape
[1] = b ; v.shape[2] = c

Please don't hardcode the dimensions of image as a constant. Instead look up the quantities you
need with image.shape[0] , etc.

(𝑙𝑒𝑛𝑔𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡, 𝑑𝑒𝑝𝑡ℎ = 3)

(𝑙𝑒𝑛𝑔𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 3, 1)

sigmoid_derivative(x) = [0.19661193 0.10499359 0.04517666]


# GRADED FUNCTION: sigmoid_derivative
​
def sigmoid_derivative(x):
    """
    Compute the gradient (also called the slope or derivative) of the sigmoid function 
    You can store the output of the sigmoid function into variables and then use it to 
    
    Arguments:
    x -- A scalar or numpy array
​
    Return:
    ds -- Your computed gradient.
    """
    
    ### START CODE HERE ### (≈ 2 lines of code)
    s = sigmoid(x)
    ds = s*(1-s)
    ### END CODE HERE ###
    
    return ds

x = np.array([1, 2, 3])
print ("sigmoid_derivative(x) = " + str(sigmoid_derivative(x)))

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html
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Entrée [12]:

Entrée [13]:

Expected Output:

**image2vector(image)**
[[ 0.67826139]
[ 0.29380381]
[ 0.90714982]
[ 0.52835647]
[ 0.4215251 ]
[ 0.45017551]
[
0.92814219]
[ 0.96677647]
[ 0.85304703]
[ 0.52351845]
[ 0.19981397]
[ 0.27417313]
[
0.60659855]
[ 0.00533165]
[ 0.10820313]
[ 0.49978937]
[ 0.34144279]
[ 0.94630077]]

image2vector(image) = [[0.67826139]

[0.29380381]

[0.90714982]

[0.52835647]

[0.4215251 ]

[0.45017551]

[0.92814219]

[0.96677647]

[0.85304703]

[0.52351845]

[0.19981397]

[0.27417313]

[0.60659855]

[0.00533165]

[0.10820313]

[0.49978937]

[0.34144279]

[0.94630077]]


(3, 3, 2)


# GRADED FUNCTION: image2vector
def image2vector(image):
    """
    Argument:
    image -- a numpy array of shape (length, height, depth)
    
    Returns:
    v -- a vector of shape (length*height*depth, 1)
    """
    
    ### START CODE HERE ### (≈ 1 line of code)
    v = image.reshape((image.shape[0]*image.shape[1]*image.shape[2], 1))
    ### END CODE HERE ###
    
    return v

# This is a 3 by 3 by 2 array, typically images will be (num_px_x, num_px_y,3) where 3 
image = np.array([[[ 0.67826139,  0.29380381],
        [ 0.90714982,  0.52835647],
        [ 0.4215251 ,  0.45017551]],
​
       [[ 0.92814219,  0.96677647],
        [ 0.85304703,  0.52351845],
        [ 0.19981397,  0.27417313]],
​
       [[ 0.60659855,  0.00533165],
        [ 0.10820313,  0.49978937],
        [ 0.34144279,  0.94630077]]])
​
print ("image2vector(image) = " + str(image2vector(image)))
print(image.shape)
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1.4 - Normalizing rows
Another common technique we use in Machine Learning and Deep Learning is to normalize our data. It
often leads to a better performance because gradient descent converges faster after normalization. Here,
by normalization we mean changing x to  (dividing each row vector of x by its norm).

For example, if

then

and

Note that you can divide matrices of different sizes and it works fine: this is called broadcasting and you're
going to learn about it in part 5.

Exercise: Implement normalizeRows() to normalize the rows of a matrix. After applying this function to an
input matrix x, each row of x should be a vector of unit length (meaning length 1).

𝑥

‖𝑥‖

𝑥 = [ ]
0

2

3

6

4

4
(3)

‖𝑥‖ = 𝑛𝑝. 𝑙𝑖𝑛𝑎𝑙𝑔. 𝑛𝑜𝑟𝑚(𝑥, 𝑎𝑥𝑖𝑠 = 1, 𝑘𝑒𝑒𝑝𝑑𝑖𝑚𝑠 = 𝑇𝑟𝑢𝑒) = [ ]
5

56
⎯ ⎯⎯⎯

√
(4)

𝑥_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = =
𝑥

‖𝑥‖








0

2

56√

3

5

6

56√

4

5

4

56√






 (5)

Entrée [14]:

Entrée [15]:

normalizeRows(x) = [[0.         0.6        0.8       ]

[0.13736056 0.82416338 0.54944226]]


(2, 3)


# GRADED FUNCTION: normalizeRows
​
def normalizeRows(x):
    """
    Implement a function that normalizes each row of the matrix x (to have unit length)
    
    Argument:
    x -- A numpy matrix of shape (n, m)
    
    Returns:
    x -- The normalized (by row) numpy matrix. You are allowed to modify x.
    """
    
    ### START CODE HERE ### (≈ 2 lines of code)
    # Compute x_norm as the norm 2 of x. Use np.linalg.norm(..., ord = 2, axis = ..., k
    x_norm = np.linalg.norm(x, ord = 2, axis=1, keepdims=True)
    
    # Divide x by its norm.
    x = x/x_norm
    ### END CODE HERE ###
​
    return x

x = np.array([
    [0, 3, 4],
    [1, 6, 4]])
print("normalizeRows(x) = " + str(normalizeRows(x)))
print(x.shape)
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Expected Output:

**normalizeRows(x)** [[ 0. 0.6 0.8 ]
[ 0.13736056 0.82416338 0.54944226]]

Note:
In normalizeRows(), you can try to print the shapes of x_norm and x, and then rerun the
assessment. You'll find out that they have different shapes. This is normal given that x_norm takes the
norm of each row of x. So x_norm has the same number of rows but only 1 column. So how did it work
when you divided x by x_norm? This is called broadcasting and we'll talk about it now!

1.5 - Broadcasting and the softmax function
A very important concept to understand in numpy is "broadcasting". It is very useful for performing
mathematical operations between arrays of different shapes. For the full details on broadcasting, you can
read the official broadcasting documentation
(http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html).

Exercise: Implement a softmax function using numpy. You can think of softmax as a normalizing function
used when your algorithm needs to classify two or more classes. You will learn more about softmax in the
second course of this specialization.

Instructions:

for 𝑥 ∈ , 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥([ ]) = [ℝ
1×𝑛

𝑥1 𝑥2 . . . 𝑥𝑛
𝑒𝑥1

∑
𝑗
𝑒𝑥𝑗

𝑒𝑥2

∑
𝑗
𝑒𝑥𝑗

for a matrix 𝑥 ∈ ,   maps to the element in the   row and   column of 𝑥, thus we haveℝ
𝑚×𝑛 𝑥𝑖𝑗 𝑖𝑡ℎ 𝑗𝑡ℎ

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 =










𝑥11

𝑥21

⋮
𝑥𝑚1

𝑥12

𝑥22

⋮
𝑥𝑚2

𝑥13

𝑥23

⋮
𝑥𝑚3

…

…

⋱
…

𝑥1𝑛

𝑥2𝑛

⋮
𝑥𝑚𝑛





















𝑒𝑥11

∑
𝑗
𝑒
𝑥1𝑗

𝑒𝑥21

∑
𝑗
𝑒
𝑥2𝑗

⋮
𝑒𝑥𝑚1

∑
𝑗
𝑒𝑥𝑚𝑗

𝑒𝑥12

∑
𝑗
𝑒
𝑥1𝑗

𝑒𝑥22

∑
𝑗
𝑒
𝑥2𝑗

⋮
𝑒𝑥𝑚2

∑
𝑗
𝑒𝑥𝑚𝑗

𝑒𝑥13

∑
𝑗
𝑒
𝑥1𝑗

𝑒𝑥23

∑
𝑗
𝑒
𝑥2𝑗

⋮
𝑒𝑥𝑚3

∑
𝑗
𝑒𝑥𝑚𝑗

…

…

⋱

…

Note

Note that later in the course, you'll see "m" used to represent the "number of training examples", and each
training example is in its own column of the matrix.

Also, each feature will be in its own row (each row has data for the same feature).

Softmax should be performed for all features of each training example, so softmax would be performed on
the columns (once we switch to that representation later in this course).

However, in this coding practice, we're just focusing on getting familiar with Python, so we're using the
common math notation 

where  is the number of rows and  is the number of columns.

𝑚 × 𝑛

𝑚 𝑛

http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
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Entrée [16]:

Entrée [17]:

Expected Output:

**softmax(x)** [[ 9.80897665e-01 8.94462891e-04 1.79657674e-02 1.21052389e-04
1.21052389e-04]
[ 8.78679856e-
01 1.18916387e-01 8.01252314e-04 8.01252314e-04
8.01252314e-04]]

Note:

If you print the shapes of x_exp, x_sum and s above and rerun the assessment cell, you will see that
x_sum is of shape (2,1) while x_exp and s are of shape (2,5). x_exp/x_sum works due to python
broadcasting.

Congratulations! You now have a pretty good understanding of python numpy and have implemented a
few useful functions that you will be using in deep learning.

**What you need to remember:**
- np.exp(x) works for any np.array x and applies the exponential function
to every coordinate
- the sigmoid function and its gradient
- image2vector is commonly used in deep
learning
- np.reshape is widely used. In the future, you'll see that keeping your matrix/vector dimensions

softmax(x) = [[9.80897665e-01 8.94462891e-04 1.79657674e-02 1.21052389e-04

 1.21052389e-04]

[8.78679856e-01 1.18916387e-01 8.01252314e-04 8.01252314e-04

 8.01252314e-04]]


# GRADED FUNCTION: softmax
​
def softmax(x):
    """Calculates the softmax for each row of the input x.
​
    Your code should work for a row vector and also for matrices of shape (m,n).
​
    Argument:
    x -- A numpy matrix of shape (m,n)
​
    Returns:
    s -- A numpy matrix equal to the softmax of x, of shape (m,n)
    """
    
    ### START CODE HERE ### (≈ 3 lines of code)
    # Apply exp() element-wise to x. Use np.exp(...).
    x_exp = np.exp(x)
​
    # Create a vector x_sum that sums each row of x_exp. Use np.sum(..., axis = 1, keep
    x_sum = np.sum(x_exp, axis = 1, keepdims = True)
    
    # Compute softmax(x) by dividing x_exp by x_sum. It should automatically use numpy 
    s = x_exp/x_sum
​
    ### END CODE HERE ###
    
    return s

x = np.array([
    [9, 2, 5, 0, 0],
    [7, 5, 0, 0 ,0]])
print("softmax(x) = " + str(softmax(x)))
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straight will go toward eliminating a lot of bugs. - numpy has efficient built-in functions
- broadcasting is
extremely useful

2) Vectorization

In deep learning, you deal with very large datasets. Hence, a non-computationally-optimal function can
become a huge bottleneck in your algorithm and can result in a model that takes ages to run. To make
sure that your code is computationally efficient, you will use vectorization. For example, try to tell the
difference between the following implementations of the dot/outer/elementwise product.
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Entrée [18]:

dot = 278

----- Computation time = 0.0ms


outer = [[81. 18. 18. 81.  0. 81. 18. 45.  0.  0. 81. 18. 45.  0.  0.]

[18.  4.  4. 18.  0. 18.  4. 10.  0.  0. 18.  4. 10.  0.  0.]

[45. 10. 10. 45.  0. 45. 10. 25.  0.  0. 45. 10. 25.  0.  0.]

[ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]

[ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]

[63. 14. 14. 63.  0. 63. 14. 35.  0.  0. 63. 14. 35.  0.  0.]

[45. 10. 10. 45.  0. 45. 10. 25.  0.  0. 45. 10. 25.  0.  0.]

[ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]

[ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]

[ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]

[81. 18. 18. 81.  0. 81. 18. 45.  0.  0. 81. 18. 45.  0.  0.]

[18.  4.  4. 18.  0. 18.  4. 10.  0.  0. 18.  4. 10.  0.  0.]

[45. 10. 10. 45.  0. 45. 10. 25.  0.  0. 45. 10. 25.  0.  0.]

[ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]

[ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]]

----- Computation time = 0.0ms


elementwise multiplication = [81.  4. 10.  0.  0. 63. 10.  0.  0.  0. 81.  4. 25.  
0.  0.]


import time
​
x1 = [9, 2, 5, 0, 0, 7, 5, 0, 0, 0, 9, 2, 5, 0, 0]
x2 = [9, 2, 2, 9, 0, 9, 2, 5, 0, 0, 9, 2, 5, 0, 0]
​
### CLASSIC DOT PRODUCT OF VECTORS IMPLEMENTATION ###
tic = time.process_time()
dot = 0
for i in range(len(x1)):
    dot+= x1[i]*x2[i]
toc = time.process_time()
print ("dot = " + str(dot) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "
​
### CLASSIC OUTER PRODUCT IMPLEMENTATION ###
tic = time.process_time()
outer = np.zeros((len(x1),len(x2))) # we create a len(x1)*len(x2) matrix with only zero
for i in range(len(x1)):
    for j in range(len(x2)):
        outer[i,j] = x1[i]*x2[j]
toc = time.process_time()
print ("outer = " + str(outer) + "\n ----- Computation time = " + str(1000*(toc - tic))
​
### CLASSIC ELEMENTWISE IMPLEMENTATION ###
tic = time.process_time()
mul = np.zeros(len(x1))
for i in range(len(x1)):
    mul[i] = x1[i]*x2[i]
toc = time.process_time()
print ("elementwise multiplication = " + str(mul) + "\n ----- Computation time = " + st
​
### CLASSIC GENERAL DOT PRODUCT IMPLEMENTATION ###
W = np.random.rand(3,len(x1)) # Random 3*len(x1) numpy array
tic = time.process_time()
gdot = np.zeros(W.shape[0])
for i in range(W.shape[0]):
    for j in range(len(x1)):
        gdot[i] += W[i,j]*x1[j]
toc = time.process_time()
print ("gdot = " + str(gdot) + "\n ----- Computation time = " + str(1000*(toc - tic)) +
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Entrée [19]:

As you may have noticed, the vectorized implementation is much cleaner and more efficient. For bigger
vectors/matrices, the differences in running time become even bigger.

----- Computation time = 0.0ms

gdot = [20.93811308 28.24612439 12.74192105]

----- Computation time = 0.0ms


dot = 278

----- Computation time = 0.0ms


outer = [[81 18 18 81  0 81 18 45  0  0 81 18 45  0  0]

[18  4  4 18  0 18  4 10  0  0 18  4 10  0  0]

[45 10 10 45  0 45 10 25  0  0 45 10 25  0  0]

[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]

[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]

[63 14 14 63  0 63 14 35  0  0 63 14 35  0  0]

[45 10 10 45  0 45 10 25  0  0 45 10 25  0  0]

[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]

[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]

[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]

[81 18 18 81  0 81 18 45  0  0 81 18 45  0  0]

[18  4  4 18  0 18  4 10  0  0 18  4 10  0  0]

[45 10 10 45  0 45 10 25  0  0 45 10 25  0  0]

[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]

[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]]
----- Computation time = 0.0ms


elementwise multiplication = [81  4 10  0  0 63 10  0  0  0 81  4 25  0  0]

----- Computation time = 0.0ms


gdot = [20.93811308 28.24612439 12.74192105]

----- Computation time = 0.0ms


x1 = [9, 2, 5, 0, 0, 7, 5, 0, 0, 0, 9, 2, 5, 0, 0]
x2 = [9, 2, 2, 9, 0, 9, 2, 5, 0, 0, 9, 2, 5, 0, 0]
​
### VECTORIZED DOT PRODUCT OF VECTORS ###
tic = time.process_time()
dot = np.dot(x1,x2)
toc = time.process_time()
print ("dot = " + str(dot) + "\n ----- Computation time = " + str(1000*(toc - tic)) + "
​
### VECTORIZED OUTER PRODUCT ###
tic = time.process_time()
outer = np.outer(x1,x2)
toc = time.process_time()
print ("outer = " + str(outer) + "\n ----- Computation time = " + str(1000*(toc - tic))
​
### VECTORIZED ELEMENTWISE MULTIPLICATION ###
tic = time.process_time()
mul = np.multiply(x1,x2)
toc = time.process_time()
print ("elementwise multiplication = " + str(mul) + "\n ----- Computation time = " + st
​
### VECTORIZED GENERAL DOT PRODUCT ###
tic = time.process_time()
dot = np.dot(W,x1)
toc = time.process_time()
print ("gdot = " + str(dot) + "\n ----- Computation time = " + str(1000*(toc - tic)) + 
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Note that np.dot()  performs a matrix-matrix or matrix-vector multiplication. This is different from 
np.multiply()  and the *  operator (which is equivalent to .*  in Matlab/Octave), which performs an

element-wise multiplication.

2.1 Implement the L1 and L2 loss functions
Exercise: Implement the numpy vectorized version of the L1 loss. You may find the function abs(x)
(absolute value of x) useful.

Reminder:

The loss is used to evaluate the performance of your model. The bigger your loss is, the more
different your predictions ( ) are from the true values ( ). In deep learning, you use optimization
algorithms like Gradient Descent to train your model and to minimize the cost.
L1 loss is defined as:

𝑦 ̂  𝑦

( , 𝑦) = | − |𝐿1 𝑦 ̂  ∑
𝑖=0

𝑚

𝑦(𝑖) 𝑦 ̂ 
(𝑖)

(6)

Entrée [20]:

Entrée [21]:

Expected Output:

<tr> 

  <td> **L1** </td> 

  <td> 1.1 </td> 

</tr>

Exercise: Implement the numpy vectorized version of the L2 loss. There are several way of implementing
the L2 loss but you may find the function np.dot() useful. As a reminder, if , then 
np.dot(x,x)  = .

𝑥 = [ , , . . . , ]𝑥1 𝑥2 𝑥𝑛
∑𝑛𝑗=0 𝑥

2
𝑗

L1 = 1.1


# GRADED FUNCTION: L1
​
def L1(yhat, y):
    """
    Arguments:
    yhat -- vector of size m (predicted labels)
    y -- vector of size m (true labels)
    
    Returns:
    loss -- the value of the L1 loss function defined above
    """
    
    ### START CODE HERE ### (≈ 1 line of code)
    loss = np.sum(np.abs(yhat-y))
    ### END CODE HERE ###
    
    return loss

yhat = np.array([.9, 0.2, 0.1, .4, .9])
y = np.array([1, 0, 0, 1, 1])
print("L1 = " + str(L1(yhat,y)))
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L2 loss is defined as
𝑗 𝑗

( , 𝑦) = ( −𝐿2 𝑦 ̂  ∑
𝑖=0

𝑚

𝑦(𝑖) 𝑦 ̂ 
(𝑖)

)2 (7)

Entrée [22]:

Entrée [23]:

Expected Output:

**L2** 0.43

Congratulations on completing this assignment. We hope that this little warm-up exercise helps you in the
future assignments, which will be more exciting and interesting!

**What to remember:**
- Vectorization is very important in deep learning. It provides computational
efficiency and clarity.
- You have reviewed the L1 and L2 loss.
- You are familiar with many numpy
functions such as np.sum, np.dot, np.multiply, np.maximum, etc...

L2 = 0.43


# GRADED FUNCTION: L2
​
def L2(yhat, y):
    """
    Arguments:
    yhat -- vector of size m (predicted labels)
    y -- vector of size m (true labels)
    
    Returns:
    loss -- the value of the L2 loss function defined above
    """
    
    ### START CODE HERE ### (≈ 1 line of code)
    loss =  np.sum((yhat-y)**2)
    ### END CODE HERE ###
    
    return loss

yhat = np.array([.9, 0.2, 0.1, .4, .9])
y = np.array([1, 0, 0, 1, 1])
print("L2 = " + str(L2(yhat,y)))


