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CHAPTER 4 

PRACTICAL ASPECTS OF DEEP LEARNING 

2 



Applied ML is a highly iterative process 
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# layers 

# hidden units 

learning rates 

activation functions … 

 Its impossible to get all your hyperparameters right on a new application 

from the first time. 

 So the idea is you go through the loop: Idea ⟹ Code ⟹ Experiment. 

 You have to go through the loop many times to figure out your 

hyperparameters. 

Idea 

Experiment 
Code 



Train/dev/test sets 
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Training Dev Test 

60% 20% 20% 

Classical ML (100 – 10000 samples): 

Deep learning (1M samples) 

Training Dev Test 

98% 

99.5% 

1% 

0.25% 

1% 

0.25% 

 Your data will be split into three parts: 

 Training set (Has to be the largest set) 

 Hold-out cross validation set / Development or "dev" set. 

 Testing set. 

 You will try to build a model upon training set. 

 Then try to optimize hyperparameters on dev set as much as possible. 

 Then after your model is ready you try and evaluate the testing set. 

 The trend now gives the training data the biggest sets. 

Data: 

Data: 



Mismatched train/test distribution 
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Training set: 

Cat pictures from 

webpages 

Dev/test sets: 

Cat pictures from 

users using your app 

 Make sure dev set and test set come from the same distribution. 

 For example if cat train set is from the web and the dev/test images are 

from users cell phone they will mismatch. It is better to make sure that dev 

and test set are from the same distribution. 

 The dev set rule is to try them on some of the good models you've created. 

 

 Its OK to only have a dev set without a testing set. But a lot of people in this case 

call the dev set as the test set. A better terminology is to call it a dev set as its used 

in the development. 



Bias and Variance 
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 Bias / Variance techniques are easy to learn, but difficult to master. 

 So here the explanation of Bias / Variance: 

 If your model is underfitting, it has a "high bias" 

 If your model is overfitting then it has a "high variance" 

 Your model will be alright if you balance the Bias / Variance. 

high bias "just right" high variance 

Overfitting Appropriate Underfitting 



Bias and Variance 
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Train set error 1% 15% 15% 0.5% 

Dev set error 11% 16% 30% 1% 

High variance 

(Overfitting) 

High bias 

(Underfitting) 

High bias and 

high variance 

(Overfitting and 

underfitting 

Low bias and 

low variance 

(Best) 

Cat classification 

𝑦 = 1 𝑦 = 0 

Assuming humans get 0% error  



Basic recipe for machine learning 
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High bias? 

(Training data performance) 

 Bigger network (size of hidden units, 

number of layers). 

 Try to run training longer. 

 Try NN architecture search. 

 Try different (advanced) optimization 

algorithms. 

YES 

High variance ? 

(dev set performance) 

NO 

YES 
 More data 

 Try regularization 

 NN architecture search (a different 

model that is suitable for your data.) 
NO 

Done  Try until you have a low bias and low variance. 

 Its very helpful to use deep learning for solving the "Bias/variance 

tradeoff" problem because with deep learning you have more 

options/tools. 

 Training a bigger neural network never hurts. 



Regularization (Logistic regression) 
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min
𝑤,𝑏

𝐽 𝑤, 𝑏 ,     𝑤 ∈ ℝ𝑛𝑥 , 𝑏 ∈ ℝ 

𝑳𝟐 regularization : 𝐽 𝑤, 𝑏 =
1

𝑚
 ℒ 𝑦 𝑖 , 𝑦 𝑖𝑚

𝑖=1 +
𝜆

2𝑚
𝑤 2

2, 𝑤 2
2 =  𝑤𝑗

2𝑛𝑥
𝑗=1 = 𝑤𝑇𝑤  

𝑳𝟏 regularization : 𝐽 𝑤, 𝑏 =
1

𝑚
 ℒ 𝑦 𝑖 , 𝑦 𝑖𝑚

𝑖=1 +
𝜆

𝑚
𝑤 1, 𝑤 1 =  𝑤𝑗

𝑛𝑥
𝑗=1   

 Adding regularization to NN will help it reduce variance (overfitting) 

 L1 regularization version makes a lot of 𝑤 values become zeros, which makes the model 

size smaller. 

 L2 regularization is being used much more often. 

 𝜆 (lambda) is the regularization parameter (hyperparameter). 

Euclidian norm 



Regularization (Neural network) 
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min
𝑤,𝑏

𝐽 𝑤[1], 𝑏[1], … , 𝑤[𝐿], 𝑏[𝐿] ,  

𝐽 𝑤[1], 𝑏[1], … , 𝑤[𝐿], 𝑏[𝐿] =
1

𝑚
 ℒ 𝑦 𝑖 , 𝑦 𝑖𝑚

𝑖=1 +
𝜆

2𝑚
𝑤[𝑙] 

𝐹

2
       . 𝑭

𝟐: Forbenius norm 

 𝑤[𝑙] 
𝐹

2
=   𝑤𝑖𝑗

[𝑙] 2
𝑛[𝑙−1]

𝑗=1
𝑛[𝑙]

𝑖=1       𝑤[𝑙]: 𝑛[𝑙], 𝑛[𝑙−1]  

Weight decay: 

𝑤[𝐿] = 𝑤[𝐿] − 𝛼 𝑓𝑟𝑜𝑚 𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝 +
𝜆

𝑚
𝑤[𝐿]  

𝑤[𝐿] = 𝑤[𝐿] −
𝛼𝜆

𝑚
𝑤 𝐿 − 𝛼 𝑓𝑟𝑜𝑚 𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝  

𝑤[𝐿] = 1 −
𝛼𝜆

𝑚
𝑤[𝐿] − 𝛼 𝑓𝑟𝑜𝑚 𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝  

𝑑𝑤[𝐿] = 𝑓𝑟𝑜𝑚 𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝 +
𝜆

𝑚
𝑤[𝐿] 

𝑤[𝐿] = 𝑤[𝐿] − 𝛼𝑑𝑤[𝐿] 

 In practice this penalizes large 

weights and effectively limits 

the freedom in your model. 

 The new term 1 −
𝛼𝜆

𝑚
𝑤[𝐿] 

causes the weight to decay in 

proportion to its size. 



How does regularization prevent overfitting? 
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𝑥1 

𝑥2 𝑦  

𝑥3 

𝐽 𝑤[𝑙], 𝑏[𝑙] =
1

𝑚
 ℒ 𝑦 𝑖 , 𝑦 𝑖

𝑚

𝑖=1

+  
𝜆

2𝑚
𝑤[𝑙] 

𝐹

2
𝐿

𝑙=1

 

 If 𝜆 is very big ⇒ 𝑤[𝑙] ≈ 0 ⇒ more simple neural network. 

Here are some intuitions: 

 

 Intuition 1: 

 If 𝜆 is too large : a lot of w's will be close to zeros which will make the NN 

simpler (you can think of it as it would behave closer to logistic regression). 

 If 𝜆 is good enough: it will just reduce some weights that makes the neural 

network overfit. 



How does regularization prevent overfitting? 
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𝑧[𝑙] = 𝑤 𝑙 𝑎 𝑙−1 + 𝑏[𝑙] 

If 𝜆 is very big ⇒ 𝑤[𝑙] ≈ 0 ⇒ 𝑧[𝑙] will be relatively small, then every layer will be ≈ Linear 

 

 Intuition 2 (with tanh activation function): 

 If lambda is too large: w's will be small (close to zero) - will use the linear part of the 

tanh activation function, so we will go from non linear activation to roughly linear which 

would make the NN a roughly linear classifier. 

 If lambda good enough: it will just make some of tanh activations roughly linear which 

will prevent overfitting. 

tanh: 

𝑎 =
𝑧𝑧 − 𝑒−𝑧

𝑧𝑧 + 𝑒−𝑧
 

Nonlinear ≈ Linear 



Dropout regularization 
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𝑥1 

𝑥2 
𝑦  

𝑥3 

𝑥4 

𝑥1 

𝑥2 
𝑦  

𝑥3 

𝑥4 
0.5 0.5 0.5 

 Go through each of the layers of the network and set some probability of 

eliminating a node in neural network. 

 For each of these layers, we're going to, for each node, toss a coin and have a 0.5 

chance of keeping each node and 0.5 chance of removing each node. 

 Then remove all the outgoing things from that node as well. 



Dropout regularization 
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𝑥1 

𝑥2 
𝑦  

𝑥3 

𝑥4 

𝑥1 

𝑥2 
𝑦  

𝑥3 

𝑥4 
0.5 0.5 0.5 

 We end up with a much smaller network. 

 And then do back propagation training. 



Implementing dropout (“Inverted dropout”) 
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keep_prob = 0.8 # 0 <= keep_prob <= 1 

l = 3 # this code is only for layer 3 

# the generated number that are less than 0.8 will be dropped. 

80% stay, 20% dropped 

d3 = np.random.rand(a[l].shape[0], a[l].shape[1]) < keep_prob 

a3 = np.multiply(a3,d3) # keep only the values in d3 

# increase a3 to not reduce the expected value of output 

# (ensures that the expected value of a3 remains the same) - to 

solve the scaling problem 

a3 = a3 / keep_prob 

 Vector d[l] is used for forward and back propagation and is the same for them, but 

it is different for each iteration (pass) or training example. 

 At test time we don't use dropout. If you implement dropout at test time - it would 

add noise to predictions. 



Why does drop-out work? 
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 Intuition: Can’t rely on any one feature, so have to spread out weights. 

𝑥1 

𝑥2 
𝑦  

𝑥3 

1.0 

0.7 0.5 

0.7 
1.0 

1.0 



Data augmentation 
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4 

 In a computer vision data: 

 You can flip all your pictures horizontally this will give you m more data instances. 

 You could also apply a random position and rotation to an image to get more data. 

 in OCR, you can impose random rotations and distortions to digits/letters. 

 New data obtained using this technique isn't as good as the real independent 

data, but still can be used as a regularization technique. 



Early stopping 
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 In this technique we plot the training set and the dev set cost together for each iteration. 

At some iteration the dev set cost will stop decreasing and will start increasing. 

 We will pick the point at which the training set error and dev set error are best (lowest 

training cost with lowest dev cost). 

 We will take these parameters as the best parameters. 

 The advantage of this method is that you don't need to search a hyperparameter like 

in other regularization approaches (like lambda in L2 regularization). 

. 

# iterations 

. 
𝑱 



Normalizing training sets 
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𝒙𝟐 

𝒙𝟏 

𝒙𝟐 

𝒙𝟏 

𝒙𝟐 

𝒙𝟏 

Subtract mean: 

𝜇 =
1

𝑚
 𝑋(𝑖)

𝑚

𝑖=1

 

𝑋 ≔ 𝑋 − 𝜇 

Normalize variance: 

𝜎2 =
1

𝑚
 𝑋(𝑖)2
𝑚

𝑖=1

 

𝑋 ≔ 𝑋/𝜎2 

Use the same parameters 𝝁 and 𝝈𝟐 to normalize the test set. 



Why normalize inputs? 
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𝑱 

𝒘 𝒃 

Unnormalized : 

𝑱 

𝒘 
𝒃 

Normalized : 

𝒃 

𝒘 

𝒃 

𝒘 

J 𝑤, 𝑏 =
1

𝑚
 ℒ 𝑦 , 𝑦

𝑚

𝑖=1

 

If we normalize, we can use a much larger learning rate 

𝛼 ⟹ speed up the training process 



Vanishing/exploding gradients 
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𝑥1 

𝑥2 
𝑦  

𝑤[1] 𝑤[2] 𝑤[3] ⋯ 𝑤[𝐿] 

 The Vanishing / Exploding gradients occurs when your derivatives become very small 

or very big. 

 To understand the problem, suppose that we have a deep neural network with number of 

layers L, and all the activation functions are linear and each b = 0 

𝑔 𝑧 = 𝑧   , 𝑏 = 0 

𝑦 = 𝑤[𝐿]𝑤[𝐿−1] ⋯𝑤[2]𝑤[1]𝑥 

Example: Deep neural network (L layers) 

If 𝑤 =
0.5 0
0 0.5

⟹ 0.5𝐿−1 ⇒ Vanishing 

If 𝑤 =
1.5 0
0 1.5

⟹ 1.5𝐿−1 ⇒ Exploding 

 

In both cases gradient descent takes a very long time 



Vanishing/exploding gradients 
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 A partial solution to the Vanishing / Exploding gradients in NN is better or more careful 

choice of the random initialization of weights. 

 He/Xavier initialization: 

o For ReLU: 𝑊 𝑙 = 𝑟𝑎𝑛𝑑 ∗
2

𝑛[𝑙−1] 

o For tanh: 𝑊 𝑙 = 𝑟𝑎𝑛𝑑 ∗
1

𝑛[𝑙−1] 

o For tanh (Bengio et al.): 𝑊 𝑙 = 𝑟𝑎𝑛𝑑 ∗
2

𝑛 𝑙 +𝑛 𝑙−1  

 Number 1 or 2 in the nominator can also be a hyperparameter to tune (but not the first to 

start with). 

 This is one of the best way of partially solution to Vanishing / Exploding gradients (ReLU 

+ Weight Initialization with variance) which will help gradients not to vanish/explode too 

quickly. 

 This initialization is called "He Initialization / Xavier Initialization" and has been 

published in 2015 paper. 



Gradient Checking 
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 If your cost does not decrease on each iteration you may have a back-

propagation bug. 

 Gradient checking approximates the gradients and is very helpful for 

finding the errors in your backpropagation implementation but it's 

slower than gradient descent (so use only for debugging). 

 Implementation of this is very simple. 

 

 



Gradient Checking 
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 Take 𝑊[1], 𝑏[1], ⋯ ,𝑊[𝐿], 𝑏[𝐿] and reshape into a big vector 𝜃. 

The cost function will be 𝐉 𝜽  

 

 Take 𝑑𝑊[1], 𝑑𝑏[1], ⋯ , 𝑑𝑊[𝐿], 𝑑𝑏[𝐿]  and reshape into a big 

vector d𝜃. 

Is 𝐝𝜽 the gradient of 𝐉 𝜽 ? 

       



Gradient Checking 
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 Algorithm: 

 

 

 

 

 

 Finally we evaluate this formula 
𝑑𝜃𝑎𝑝𝑝𝑟𝑜𝑥−𝑑𝜃

𝑑𝜃𝑎𝑝𝑝𝑟𝑜𝑥 + 𝑑𝜃
 and check (with 𝑒𝑝𝑠 =  10−7) (*): 

o if it is < 𝟏𝟎−𝟕: great, very likely the backpropagation implementation is correct. 

o if around 𝟏𝟎−𝟓: can be OK, but need to inspect if there are no particularly big values in 

𝑑𝜃𝑎𝑝𝑝𝑟𝑜𝑥 − 𝑑𝜃. 

o if it is ≥ 𝟏𝟎−𝟑: bad, probably there is a bug in backpropagation implementation. 
 

(*) || ||: Euclidean vector norm. 

eps = 𝟏𝟎−𝟕 # small number 
for i in len(𝜽): 

𝑑𝜃𝑎𝑝𝑝𝑟𝑜𝑥 [𝑖] =
𝐽 𝜃1, 𝜃2 … , 𝜃𝑖 + 𝑒𝑝𝑠, … − 𝐽 𝜃1, 𝜃2 … , 𝜃𝑖 − 𝑒𝑝𝑠, …

2 ∗ 𝑒𝑝𝑠
 



Gradient checking implementation notes 
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 Don't use the gradient checking algorithm at training time because it's very slow. 

 Use gradient checking only for debugging. 

 If the algorithm fails grad check, look at components to try to identify the bug. 

 Don't forget to add 
𝜆

𝑚
𝑤 1 to 𝐽 if you are using L1 or L2 regularization. 

 Gradient checking doesn't work with dropout because 𝐽 is not consistent. 

o You can first turn off dropout (set keep_prob = 1.0 ), run gradient checking and then turn on dropout 

again. 

 Run gradient checking at random initialization and train the network for a while maybe 

there's a bug which can be seen when weights 𝑤 and bias 𝑏 become larger (further from 

0) and can't be seen on the first iteration (when weights 𝑤 and bias 𝑏 are very small). 



Initialization summary 
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 The weights 𝑾 should be initialized randomly to break symmetry. 

 However, you can initialize the biases 𝑏 to zeros. Symmetry is still broken so long 

as 𝑾 is initialized randomly. 

 Different initializations lead to different results. 

 Random initialization is used to break symmetry and make sure different hidden 

units can learn different things. 

 Don't intialize to values that are too large. 

 He initialization works well for networks with ReLU activations. 



L2 Regularization summary 
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 Observations: 

o λ is a hyperparameter that you can tune using a dev set. 

o L2 regularization makes your decision boundary smoother. If λ is too large, it is also possible to 

"oversmooth", resulting in a model with high bias. 

 

 What is L2-regularization actually doing?: 

o L2-regularization relies on the assumption that a model with small weights is simpler than a model with 

large weights. Thus, by penalizing the square values of the weights in the cost function you drive all the 

weights to smaller values. It becomes too costly for the cost to have large weights! This leads to a smoother 

model in which the output changes more slowly as the input changes. 

 

 What you should remember: Implications of L2-regularization on: 

o cost computation: A regularization term is added to the cost 

o backpropagation function: There are extra terms in the gradients with respect to weight matrices 

o weights: weights end up smaller ("weight decay") - are pushed to smaller values. 



Dropout summary 
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What you should remember about dropout: 

 Dropout is a regularization technique. 

 Only use dropout during training. Don't use dropout (randomly eliminate nodes) during test time. 

 Apply dropout both during forward and backward propagation. 

 During training time, divide each dropout layer by keep_prob to keep the same expected value for 

the activations. 

 

For example: 

 If keep_prob is 0.5, then we will on average shut down half the nodes, so the output will be scaled 

by 0.5 since only the remaining half are contributing to the solution.  

 Dividing by 0.5 is equivalent to multiplying by 2. Hence, the output now has the same expected 

value. 

 You can check that this works even when keep_prob is other values than 0.5. 
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