
Deep learning

Dr. Aissa Boulmerka
a.boulmerka@centre-univ-mila.dz

2023-2024

1



CHAPTER 2
SHALLOW NEURAL NETWORKS
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What is a Neural Network?
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What is a Neural Network?
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Neural Network Representation
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Neural Network Representation
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Neural Network Representation

்

்

ଵ
[ଵ]

ଵ
ଵ ்

ଵ
[ଵ]

ଵ
[ଵ]

ଵ
[ଵ]

ଶ
[ଵ]

ଶ
ଵ ்

ଶ
[ଵ]

ଶ
[ଵ]

ଶ
[ଵ]

7



Neural Network Representation
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Neural Network Representation Learning
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For loop across multiple examples

-------------> [ଶ]

(ଵ) -------------> [ଶ](ଵ) (ଵ)

(ଶ) -------------> [ଶ](ଶ) (ଶ)

(௠) -------------> [ଶ](௠) (௠)

Example (i)Layer 2

for i=1 to m:
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Vectorizing across multiple examples

for i=1 to m:

# training examples # hidden units

𝒙
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Justification for vectorized implementation
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Recap of vectorizing across multiple examples

for i=1 to m:
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Activation functions
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𝑔[ଵ] 𝑍[ଵ] = 𝑡𝑎𝑛ℎ 𝑍[ଵ]

Sigmoid:
𝑔[ଶ] 𝑍[ଶ] = 𝜎 𝑍[ଶ]



Pros and cons of activation functions

15

Sigmoid activation function:

𝑎 =
1

1 + 𝑒ି௭

 Never use this, except for the output layer. 
 if you are doing binary classification, or 

maybe almost never use this.

tanh activation function:

𝑎 =
𝑒௭ − 𝑒ି௭

𝑒௭ + 𝑒ି௭

 The tanh is much strictly superior.

ReLU activation function:
𝑎 = max 0, 𝑧

 The default and the most commonly used 
activation function is the ReLU.

 So if you're not sure what else to use, use 
the ReLU function.

Leaky ReLU activation function:
𝑎 = max 0.01𝑧, 𝑧

 You can also try the leaky ReLU function.



Why do you need non linear activation functions?

Given :
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Derivatives of activation functions
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Sigmoid activation function:
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Derivatives of activation functions
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Tanh activation function:
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Derivatives of activation functions
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ReLU and Leaky ReLU :
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Gradient descent for neural networks
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Formulas for computing derivatives
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Forward propagation:
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What happens if you initialize weights to zero?
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• The bias terms can be initialized by 0, but initializing to all 0s is a 
problem:

• The two activations 𝟏
[𝟏] and 𝟐

[𝟏] will be the same, because both of 
these hidden units are computing exactly the same function.

• After every single iteration of training the two hidden units are still 
computing exactly the same function.
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Random initialization
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Vectorization demo
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