TP 3 (part 2): C++ libraries

1. Libraries:

A library or software library is a set of functions and procedures, grouped and made available (in a file) so that they can be used directly without having to rewrite them. The functions and procedures are grouped by their belonging to the same conceptual domain (inputs/outputs, mathematics, graphics, sorting, etc.).

Among the standard C++ libraries we can cite: **iostream**,**string**, c**math**....

➤ To use a library, add the line at the start of the program:

#include library_name>

Example:

```
#include <iostream> // library for read/write instructions.
#include <string> // library for handling character strings.
#include <cmath> // library for math functions.
```

Noticed:

The #include <iostream> instruction is not sufficient to use the cin and cout functions; these functions are defined in the std namespace, so you must add the using namespace std instruction;

2. Operators (operations) in C++ language:

Operators are symbols used to perform operations on values. Among the C++ operators, We can cite : () -++--% /* -+.

The following table gives the translation into C++ of the most frequent algorithmic operations.

Algorithmic language	C++ language
(A)	(A)
- A	- A
$A \leftarrow A+1$ (increment)	A++, ++AA
A ← A-1 (decrement)	A,-A
A mod B (modulo)	A % B
A/B(A real or B real)	A/B
A/B(A and B integers)	A/B
A*B	A*B
A+B	A+B
A–B	A–B
A > B	A > B
$A \ge B$	A >= B
A <b< td=""><td>A<b< td=""></b<></td></b<>	A <b< td=""></b<>
$A \leq B$	A <= B
A=B	A == B
$A \neq B$	A != B
A and B (boolean operation)	A && B
A or B (boolean operation)	$A \parallel B$
not(A) (boolean operation)	!A
$A \leftarrow B$ (affectation)	A=B
$A \leftarrow A + B$	A += B
A ← A–B	A -= B
A ← A * B	A *= B
A ← A / B	A /= B
$A \leftarrow A \bmod B$	A %= B

3. Operator priorities:

The precedence of operators depends on the programming language used. Operators in the C++ language are ordered as follows:

Priority	Operators
1 (stronger)	()
2	!-++
3	% / *
4	-+
5	> >=<<=
6	== !=
7	&&
8	
9 (weaker)	= += -= *= /= %=

An operand between two operators is associated with the operator which has the highest priority

Example:

$$A + B * C -----> (A + (B * C))$$

An operand between two operators of the same priority is associated with the operator closest to *LEFT* except for the operands (!-++--=+=-= *= /= %=) where it is associated with the operator most at **RIGHT**.

Example:

$$A*B/C \leftrightarrow ((A*B)/C)$$

 $A \%= B *= C \leftrightarrow (A \%= (B *= C))$

Noticed:

To avoid operator association errors, it is recommended to use **parentheses**.

4. Some mathematical functions

Math functions are defined in the c library **cmath**, so to use these functions you must first include the library at the start of the program as follows:

#include <cmath>

Among the functions contained in the <cmath> file, we can cite:

Mathematical functions	C++ language
Power: x ^y	pow (x , y) x of type float or double
square root: \sqrt{x}	sqrt(x) x must be positive
sinus (x)	sin(x)
Cosinus (x)	cos(x)
tangent(s)	tan(x)
natural logarithm: log(x)	log(x)
logarithm to base 10: $log10(x)$	log10(x)
Exponential: ex	exp(x)
The absolute value: x	abs (x) applies to integers

Noticed:

Be careful with certain functions which only apply to a particular type, they can make implicit type conversions of their operands.

Example: abs(-3.25) gives 3

Practical work:

1) Write a C++ program that calculates the following functions (use comments to clarify your programs):

$$f(x) = \frac{2(X+1)^2 - X}{x+1}$$
$$g(x) = (\sin(x) + \sqrt{x})^4$$

- The execution of the program is as follows:

