Experiment 2: Preparation of Solutions in Chemistry

Introduction

Solution : A solution is a homogeneous mixture of two or more pure substances that do not interact with each other. A solution is formed when a substance, called a solute, is dissolved in another substance, called the solvent.

Solute : Substance which dissolves in a solution.
Solvent : Substance which dissolves another to form a solution (water).
Solution = Solute + Solvent

Ways of expressing concentration

There are numerous ways to describe the concentration of a solution, and they are a useful ways to describe solutions concentrations in chemistry reactions.

Molarity	$\mathrm{C}_{\mathrm{M}}=\frac{n_{\text {solute }}}{V_{\text {solution }}}\left(\frac{\mathrm{mol}}{\mathrm{L}}\right)$
Mass concentration	$T=\frac{m_{\text {solute }}}{V_{\text {solution }}}\left(\frac{\mathrm{g}}{\mathrm{L}}\right)$
Normality	$\mathrm{C}_{\mathrm{N}}=\frac{n_{\text {eq.g }}}{V_{\text {solution }}}\left(\frac{\mathrm{eq.g}}{\mathrm{~L}}\right)$
Molality	$\mathrm{C}_{\mathrm{m}}=\frac{n_{\text {solute }}}{m_{\text {solvent }}}\left(\frac{\mathrm{mol}}{\mathrm{Kg}}\right)$

Relation between Normality and Molarity

Normality and Molarity are two important and commonly used expressions in chemistry. They are used to indicate the quantitative measurement of a substance. But what relation does Molarity have with Normality?

$$
\mathrm{C}_{\mathrm{N}}=\mathbf{Z} \mathrm{C}_{\mathrm{M}}
$$

Where Z is a constant with a number of states

For acid : Z is the number of H^{+}protons that the acid can lose. $(\mathrm{HCI}: \mathrm{Z}=1)-\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right.$: $\mathrm{Z}=2$).

* For base : Z is the number of hydroxides $-\mathrm{OH}^{-}$that the base can lose $(\mathrm{NaOH}: \mathrm{Z}=1$; BaOH_{2} : $\mathrm{Z}=2$)
* For oxidation and reduction : Z is the number of transferred electrons.

$$
\left[\mathrm{MnO}_{4}^{-}+5 \mathrm{e}-+8 \mathrm{OH}-\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}\right]: \mathrm{Z}=5
$$

For salts : Z is the number of metal atoms in its valence.

$$
\left[\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} 2 \mathrm{Al}_{3}++3 \mathrm{SO}_{4}{ }^{2-}\right]: \mathrm{Z}=2 \times(+3)=6
$$

Objective of the experiment

1. Recognising and using the equipment and tools for preparing solutions.
2. How to prepare a solution from sodium hydroxide (NaOH) by dissolving.
3. How to dilute Hydrochloric acid (HCI) solution.

Materials and Chemicals

Materials	Chemicals
• Graduated pipette or graduated cylinder	• Distilled water
- Volumetric flask	- Hydrochloric acid (HCI)
- Spatula - Watch Glass - Funnel	- Sodium hydroxide (NaOH)
- Analytical balance	

Procedure

1. Preparation of solution from solid : This is how to make a chemical solution using a solid dissolved in a liquid. We need to calculate the mass of the solid required using with the equation: $\mathbf{m}=\mathbf{C}_{\mathbf{M}} \cdot \boldsymbol{M} \cdot \boldsymbol{V}$
Question : Calculate and describe how to prepare 100 ml of sodium hydroxide (NaOH) solution with a molar concentration of $0.1 \mathrm{~mol} / \mathrm{L}\left(\mathrm{M}_{\mathrm{NaOH}}=40 \mathrm{~g} / \mathrm{mol}\right)$?

- Calculate the mass of sodium hydroxide (NaOH) needed to prepare 100 ml of $0.1 \mathrm{~mol} / \mathrm{L}$ NaOH solution.

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{M}}=\frac{n}{V}=\frac{\mathrm{m}}{M \cdot V} \rightarrow \mathrm{~m}=\mathrm{C}_{\mathrm{M}} \cdot M \cdot V \\
& m_{\mathrm{NaOH}}(\mathrm{~g})=\mathrm{C}_{\text {C الدحور }}\left(\frac{\mathrm{mol}}{\mathrm{~L}}\right) \cdot M_{\mathrm{NaOH}}\left(\frac{\mathrm{~g}}{\mathrm{~mol}}\right) \cdot V_{\mathrm{J}}(L) \\
& m_{\text {NaOH }}(\mathrm{g})=0,1 \times 40 \times 0.1=0.4 \mathrm{~g}
\end{aligned}
$$

- Weight the mass of 0.4 g of NaOH .
- Fill a clean 100 mL volumetric flask at third of it with water.
- Add 0.4 g of NaOH to this volumetric flask using a funnel.
- Stir the mixture until the NaOH is completely dissolved.
- Completely fill the volumetric flask with distilled water to the measuring line.
- Close the volumetric flask, then mix to obtain homogeneous solution of NaOH .

Scheme 1. How to prepare solutions from solid
2. Preparation of solution from liquid : This is how to make a chemical solution through dilution method. We need to calculate the volume of the starting solution required using with the equation :

$$
\mathrm{C}_{\mathrm{i}} \cdot \mathrm{~V}_{\mathrm{i}}=\mathrm{C}_{\mathrm{f}} \cdot \mathrm{~V}_{\mathrm{f}} \rightarrow V_{i}=\frac{\mathrm{C}_{\mathrm{f}} \cdot \mathrm{~V}_{\mathrm{f}}}{\mathrm{C}_{\mathrm{i}}}
$$

Question : Calculate and describe how to prepare 100 ml of $0.1 \mathrm{~mol} / \mathrm{L}$ hydrochloric acid HCI from concentarted HCl solution?

- Read the information on the concentrated HCl (commercial); the density is 1.18 , the purity rate is 37%, and the molar mass is $36.5 \mathrm{~g} / \mathrm{mol}$.
- Calculate the mass of the concentrated HCl .

We have $\mathrm{d}=1.18$ so $\rho=1.18 \mathrm{Kg} / \mathrm{L}$ i.e. one L of HCI weighs 1180 g .

- Determine the amount of pure concentrated HCl in grammes.

$$
m_{H C l}(\text { Concentrated })=\frac{1180 \times 37}{100}=436.6(\mathrm{~g})
$$

- Determining the concentration of concentrated HCl .

$$
\mathrm{C}_{\mathrm{HCl}}=\frac{n_{H C l}}{V}=\frac{\mathrm{m}_{\mathrm{HCl}}}{M_{H C l} . V}=\frac{436.6}{36.6 \times 1}=11.96\left(\frac{\mathrm{~mol}}{\mathrm{~L}}\right)
$$

- Calculating the volume required of concentrated HCl to prepre the needed solution

$$
V_{H C l}=\frac{\mathrm{C}_{\mathrm{f}} \cdot V_{\mathrm{f}}}{\mathrm{C}_{\mathrm{HCl}}}=\frac{0.1 \times 100}{11.96}=0.83(\mathrm{ml})
$$

- Fill a clean 100 mL volumetric flask at third of it with water.
- Take out 0.83 mL of concentrated HCl using the graduated pipette.
- Transfer it to the volumetric flask.
- Completely fill the volumetric flask with distilled water to the measuring line.
- Close the volumetric flask, then mix to obtain homogeneous solution of HCl .

Scheme 2. How to prepare solutions through dilution

Answer the questions

Calculate and describe how to prepare the following solutions :

1. 100 mL of 0.1 M KOH using solid KOH .
2. 200 ml of 0.25 N (eq.g/L) $\mathrm{H}_{2} \mathrm{SO}_{4}$ using concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$
3. 250 ml of a $0.3 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ from $0.5 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$.

We give

$\mathrm{KOH}:(\mathrm{M}=56.11 \mathrm{~g} / \mathrm{mol}-\%=85)$
$\mathrm{H}_{2} \mathrm{SO}_{4}:(\mathrm{M}=98 \mathrm{~g} / \mathrm{mol}-\mathrm{d}=1,18-\%=96)$
$\mathrm{CH}_{3} \mathrm{COOH}:(\mathrm{M}=60 \mathrm{~g} / \mathrm{mol}-\mathrm{d}=1.05-\%=99)$

