University center of Mila Institute of Science and Technology Dr.Chellouf yassamine Analsis 1 Year: 2023/2024 Department of informatics Email:Y.chellouf@center-univ-mila.dz 1st Year

Exercises Serie N° 1

Exercise 1

Let A and B be two non-empty and bounded sets. we define:

$$-A = \{-x \mid x \in A\}, A + B = \{x = a + b \mid a \in A, b \in B\} and A - B = \{x = a - b \mid a \in A, b \in B\}$$

- 1. Show that: $\sup(-A) = -\inf(A)$ and $\inf(-A) = -\sup(A)$.
- 2. Show that if for all $a \in A$ and $b \in B$ we have $a \leq b$, then $\sup(A) \leq \inf(B)$.
- 3. Show that $A \cup B$ is a bounded subset of \mathbb{R} and:
 - (a) $\sup(A \cup B) = \max(\sup(A), \sup(B)).$ (b) $\inf(A \cup B) = \min(\inf(A), \inf(B)).$ (*)
- 4. Show that $\sup(A) + \sup(B)$ is an upper bound of A + B and:
 - (a) $\sup(A+B) = \sup(A) + \sup(B)$.
 - (b) $\inf(A+B) = \inf(A) + \inf(B)$.

Exercise 2

- 1. Show that if $r \in \mathbb{Q}$ and $x \notin \mathbb{Q}$ then $r + x \notin \mathbb{Q}$ and if $r \neq 0$ then $r.x \notin \mathbb{Q}$.
- 2. Show that $\sqrt{2} \notin \mathbb{Q}$.
- 3. Show that $\frac{\ln 3}{\ln 2}$ is irrational.
- 4. Let a and b be two positive rationals such that \sqrt{a} and \sqrt{b} are irrational. show that $\sqrt{a} + \sqrt{b}$ is irrational. (*)

Exercise 3

Let A and B be two subsets of \mathbb{R} such that $B \subset A$. Show that:

- 1. A is bounded \implies B is bounded.
- 2. $\inf(A) \le \inf(B)$, and $\sup(A) \ge \sup(B)$.

Exercise 4

Let
$$A = \{a_n \in \mathbb{R} \mid a_n = \frac{n+3}{\frac{n}{4}+1}; n \in \mathbb{N}\}$$
 and $B = \{b_n \in \mathbb{R} \mid b_n = \frac{1}{n^2} + \frac{2}{n} + 4; n \in \mathbb{N}^*\}$.

- 1. Show that A and B are bounded in \mathbb{R} and that $\sup(A) = \inf(B)$.
- 2. Determine $\sup(A)$ and $\inf(B)$.

Exercise 5

Determine the supremum (the upper bound) and infimum (the lower bound), if they exist of the following sets: $A = \{ax + b \mid x \in [-2, 1] \text{ and } a, b \in \mathbb{R}\}, B = \{2 - \frac{1}{n}; n \in \mathbb{N}\}; C = \{\sin \frac{2n\Pi}{7}; n \in \mathbb{Z}\}.$ (*)

Exercise 6

1. Write the following numbers in the form $a + ib, (a, b \in \mathbb{R})$:

$$z_1 = \frac{5+2i}{1-2i}$$
, $z_2 = -\frac{2}{1-i\sqrt{3}}$, $z_3 = \frac{2+5i}{1-i} + \frac{2-5i}{1+i}\binom{*}{1+i}$

2. Solve the following equations:

$$z^{4} + (3-6i)z^{2} - 8 - 6i = 0, \ z^{2} - \sqrt{3}z - i = 0.(*)$$

Exercise 7

Using complex numbers, calculate $\cos(5\theta)$ and $\sin(5\theta)$ in terms of $\cos(\theta)$ and $\sin(\theta)$.

Exercise 8

- 1. Calculate the modulus and the argument of $u = \frac{\sqrt{6} i\sqrt{2}}{2}$ and v = 1 i.
- 2. Deduce the modulus and the argement of $\frac{u}{v}$.

Exercise 9 (Supplementary)

Let z be an n^{th} root of -1, so $z^n = -1$ with n > 2 and $z \neq -1$

calculate $S_n = \sum_{k=0}^{n-1} Z^{2k} = 1 + z^2 + Z^4 + \dots + z^{2(n-1)}$.

Exercises marked with (*) are left to students.