Exercice N°1: Régime triphasé

Sur un réseau (230 V / 400 V, 50 Hz) sans neutre, on branche en étoile trois récepteurs capacitifs identiques de résistance $R = 20 \Omega$ en série avec une capacité $C = 20 \mu F$.

- 1. Déterminer l'impédance complexe de chaque récepteur. Calculer son module et son argument.
- Déterminer la valeur efficace des courants en ligne, ainsi que leur déphasage par rapport aux tensions simples.
- Calculer les puissances active et réactive consommées par le récepteur triphasé, ainsi que la puissance apparente.

Exercice 2

Trois récepteurs monophasés, purement résistifs, sont montés en triangle sur le secteur 220/380V 50Hz. Sous 380V ils consomment 5.7kW chacun.

1. Calculer le courant dans chacun d'eux et le courant dans un fil de ligne.

~ • •

- 2. Le récepteur monté entre les phases 2 et 3 est coupé. Déterminer les différents courants en ligne.
- **3.** Les trois récepteurs sont maintenant en étoile. Calculer la puissance active totale et la comparer à la puissance active totale dans le cas d'un montage triangle.

Exercice 3

Une installation alimentée en triphasé 220/380V 50Hz comprend :

- Un moteur de puissance utile 8kW, de rendement 85% et de facteur de puissance 0,8.
- Un ensemble de 60 lampes 220V 100W.
- 1. Comment sont couplées les lampes ?
- 2. Calculer le courant en ligne et le facteur de puissance de l'ensemble.
- 3. Calculer la capacité des condensateurs couplés en triangle qui relève le facteur de puissance à 1.

Exercice 4

Deux récepteurs triphasés équilibrés sont alimentés par le secteur 220/380V 50Hz. Le moteur M_1 est inductif. Le récepteur M_2 est capacitif tel que $P_2=3750W$ et cos $\varphi_2=0,866$. On mesure la puissance active par la méthode des deux wattmètres : $P_a=12100W$ et $P_b=6900W$.

- **1.**Calculer P_t , Q_t , $\cos \varphi_t$ et le courant en ligne I_t .
- **2.**Calculer P_1 , Q_1 et cos φ_1 .
- 3. Chaque fil de ligne présente une résistance r=0,48 Ω et une réactance l ω =0.2 Ω . Calculer la tension composée au départ de la ligne.