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2 Discrete Chaos

1.1 Introduction

Difference equations have been increasingly used as mathematical models in
many disciplines including genetics, eipdemiology, ecology, physiology, neu-
ral networks, psychology, engineering, physics, chemistry and social sciences.
Their amenability to computerization and their mathematical simplicity have
attracted researchers from a wide range of disciplines. As we will see in Sec-
tion 1.2, difference equations are generated by maps (functions). Section 1.3
illustrates how discretizing a differential equation would yeild a difference
equation. Discretization algorithms are part of a discipline called numerical
analysis which belong to both mathematics and computer science. As most
differential equations are unsolvable, one needs to resort to computers for
help. However, computers understand only recursions or difference equations;
thus the need to discretize differential equations.

1.2 Maps vs. Difference Equations

Consider a map f : R → R where R is the set of real numbers. Then the
(positive) orbit O(x0) of a point x0 ∈ R is defined to be the set of points

O(x0) = {x0, f(x0), f2(x0), f3(x0), . . .}

where f2 = f◦f, f3 = f◦f◦f , etc.
Since most maps that we deal with are noninvertible, positive orbits will be

called orbits, unless otherwise stated.
If we let x(n) : = fn(x0), then we obtain the first-order difference equation

x(n+ 1) = f(x(n)) (1.1)

with x(0) = x0.
In population biology, x(n) may represent a population size in generation

n. Equation (1.1) models a simple population system with seasonal breeding
whose generations do not overlap (e.g., orchard pests and temperate zone
insects). It simply states that the size x(n+ 1) of a population in generation
n+1 is related to the size x(n) of the population in the preceding generation
n by the function f .

In epidemiology, x(n) represents the fraction of the population infected
at time n. In economics, x(n) may be the price per unit in time n for a
certain commodity. In the social sciences, x(n) may be the number of bits of
information that can be remembered after a period n.
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sequence {ϕ(n)}, n = 0, 1, 2, . . ., with ϕ(n+ 1) = f(ϕ(n)) and ϕ(0) = x0, i.e.,
a sequence that satisfies the equation.

1.3 Maps vs. Differential Equations

1.3.1 Euler’s Method

Consider the differential equation

x′(t) = g(x(t)), x(0) = x0 (1.6)

where x′(t) = dx
dt .

For many differential equations such as Equation (1.6), it may not be
possible to find a “closed form” solution. In this case, we resort to numer-
ical methods to approximate the solution of Equation (1.6). In the Euler
algorithm, for example, we start with a discrete set of points t0, t1, . . . , tn, . . .,
with h = tn+1− tn as the step size. Then, for tn ≤ t < tn+1, we approximate

x(t) by x(tn) and x′(t) by
x(tn+1)− x(tn)

h
. Equation (1.6) now yields the

difference equation
x(tn+1) = x(tn) + hg(x(tn))

which may be written in the simpler form

x(n+ 1) = x(n) + hg(x(n)) (1.7)

where x(n) = x(tn).
Note that Equation (1.7) is of the form of Equation (1.1) with

f(x) = f(x, h) = x+ hg(x).

Now given the initial data x(0) = x0, we may use Equation (1.7) to generate
the values x(1), x(2), x(3), . . . These values approximate the solution of the
differential Equation (1.6) at the “grid” points t1, t2, t3, . . ., provided that h
is sufficiently small.

Example 1.2
Let us now apply Euler’s method to the differential equation:

x′(t) = 0.7x2(t) + 0.7, x(0) = 1, t ∈ [0, 1]. (DE)1

1DE ≡ differential equation.
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TABLE 1.1

(∆E) Euler (∆E) Euler
(h = 0.2) (h = 0.1) Exact (DE )

n t x(n) x(n) x(t)
0 0 1 1 1
1 0.1 1.14 1.150
2 0.2 1.28 1.301 1.328
3 0.3 1.489 1.542
4 0.4 1.649 1.715 1.807
5 0.5 1.991 2.150
6 0.6 2.170 2.338 2.614
7 0.7 2.791 3.286
8 0.8 2.969 3.406 4.361
9 0.9 4.288 6.383
10 1 4.343 5.645 11.681
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FIGURE 1.1
Comparison of exact and approximate numerical solutions for Example 1.2.
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Using the separation of variable method, we obtain

1
0.7

∫
dx

x2 + 1
=

∫

dt.

Hence
tan−1(x(t)) = 0.7t+ c.

Letting x(0) = 1, we get c = π
4 . Thus, the exact solution of this equation is

given by x(t) = tan
(
0.7t+ π

4

)
.

The corresponding difference equation using Euler’s method is

x(n+ 1) = x(n) + 0.7h(x2(n) + 1), x(0) = 1. (∆E)2

Table 1.1 shows the Euler approximations for h = 0.2 and 0.1, as well as
the exact values. Figure 1.1 depicts the n−x(n) diagram or the “time series.”
Notice that the smaller the step size we use, the better the approximation we
have.

Note that discretization schemes may be applied to nonlinear and higher
order differential equations.

Example 1.3
(An Insect Population). Let us contemplate a population of aphids.
These are plant lice, soft bodied, pear shaped insects which are commonly
found on nearly all indoor and outdoor plants, as well as vegetables, field
crops, and fruit trees.

Let

a(n) = number of adult females in the nth generation,
p(n) = number of progeny (offspring) in the nth generation,
m = fractional mortality in the young aphids,
q = number of progeny per female aphid,
r = ratio of female aphids to total adult aphids.

Since each female produces q progeny, it follows that

p(n+ 1) = qa(n). (1.8)

Now of these p(n+1) progeny, rp(n+ 1) are female young aphids of which
(1−m)rp(n+ 1) survives to adulthood. Thus

a(n+ 1) = r(1 −m)p(n+ 1). (1.9)

2∆E ≡ difference equation.
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FIGURE 1.2
(i) a(n) goes to extinction.
(ii) a(n) = a0, constant population.
(iii) a(n)→∞ as n→∞, exponential growth.
(iv) Aphids.
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FIGURE 1.3
The Poincaré map is defined by P (xi) = xi+1.

Substituting from Equation 1.8 yields

a(n+ 1) = rq(1 −m)a(n). (1.10)

Hence
a(n) = [rq(1 −m)]na(0). (1.11)

There are three cases to consider.

(i) If rq(1−m) < 1, then lim
n→∞ a(n) = 0 and the population of aphids goes

to extinction.

(ii) If rq(1 −m) = 1, then a(n) = a0, and we have a constant population
size.

(iii) If rq(1 −m) > 1, then lim
n→∞ a(n) =∞, and the population grows expo-

nentially to ∞.

1.3.2 Poincaré Map

One of the most interesting ways on which a differential equation leads to a
map, called a Poincaré map, is through the study of periodic solutions of a
system of two differential equations

dx

dt
= f(x, y)

dy

dt
= g(x, y)
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which has a periodic orbit (closed curve) in the plane. Now choose a line L
that intersects this periodic orbit at a right angle. For any x0 on the line
L, x1 = P (x0) is the point of intersection of the orbit starting at x0 after it
returns to the line L for the first time. Consequently, xi is the intersection
point of the orbit starting at x0 after it returns to the line L for the ith
time. This defines the Poincaré map associated with our differential equation
(Figure 1.3). We will return to this method in Section 2.9.

1.4 Linear Maps/Difference Equations

The simplest maps to deal with are the linear maps and the simplest difference
equations to solve are the linear ones. Consider the linear map

f(x) = ax,

then
fn(x) = anx.

In other words, the solution of the difference equation

x(n+ 1) = ax(n), x(0) = x0 (1.12)

is given by
x(n) = anx0. (1.13)

We can make the following conclusions about the limiting behavior of the
orbits of f or the solutions of Equation (1.12):

1. If |a| < 1, then lim
n→∞|f

n(x0)| = 0
(
or lim

n→∞|x(n)| = 0
)
[see Fig. 1.4 (b)

and (c)].

2. If |a| > 1, then lim
n→∞|f

n(x0)| =∞
(
or lim

n→∞|x(n)| =∞
)
if x0 
= 0 [see

Fig. 1.4 (a) and (d)].

3. (a) If a = 1, then f is the identity map where every point is a fixed
point of f .

(b) If a = −1, then fn(x0) =

{
x0 if n is even
−x0 if n is odd

and the solution x(n) = (−1)nx0 of Equation (1.12) is said to be
periodic of period 2.
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FIGURE 1.4
Time series [n − x(n)] graphs (a) a = 1.2, (b) a = 0.7, (c) a = −0.7, (d)
a = −1.2. Solutions of Eqs. (1.12) for different values of the parameter a.

Next, let us look at the affine map f(x) = ax+ b. By successive iteration,
we get

f2(x) = a2x+ ab+ b

f3(x) = a3x+ a2b+ ab+ b
...

fn(x) = anx+
n−1∑

j=0

an−j−1b.

In other words, the solution of the difference equation

x(n+ 1) = ax(n) + b, x(0) = x0 (1.14)
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is given by

x(n) = anx0 +
n−1∑

j=0

an−j−1b

= anx0 + b
(
an − 1
a− 1

)

, if a 
= 1 (1.15)

x(n) =
(

x0 +
b

a− 1

)

an +
b

1− a , if a 
= 1. (1.16)

Using the formula of Equation (1.16), the following conclusions can be
easily verified:

1. If |a| < 1, then lim
n→∞f

n(x0) =
b

1− a
(

or lim
n→∞x(n) =

b

1− a
)

.

2. If |a| > 1, then lim
n→∞f

n(x0) = ±∞, depending on whether x0 +
b

a− 1
is

positive or negative, respectively.

3. (a) If a = 1, then fn(x0) = x0 + nb, which tends to ∞ or −∞ as
n→∞ (or x(n) = xo + nb).

(b) If a = −1, then fn(x0) = (−1)nx0 +
{
b if n is odd
0 if n is even

(

or x(n) = (−1)nx0 +
{
b if n is odd
0 if n is even

)

.

Notice that the solution of the differential equation

dx

dt
= ax(t), x(0) = x0

is given by

x(t) = eatx0. (1.17)

Comparing (1.14) and (1.17) we see that the exponential eat in the differential
equation corresponds to an, the nth power of a, in the difference equation.
The solution of the nonhomogeneous differential equation

dx

dt
= ax(t) + b, x(0) = x0 (1.18)
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is given by

x(t) = eatx0 +
∫ t

0

ea(t−s)b ds

= eatx0 +
b

a
(eat − 1)

=
(

x0 +
b

a

)

eat − b

a
. (1.19)

In cases 1, 2, 3, the behavior of the difference equation (1.15) depends on
whether a is inside the interval (−1, 1), on its boundary, or outside it. How-
ever for differential equations, the behavior of the solution of Equation (1.18)
depends on whether a < 0, a = 0, or a > 0, respectively. Consequently,

1. a < 0, lim
t→∞x(t) = −

b

a
as eat → 0 as t→∞,

2. a = 0, x(t) = x0 since
dx

dt
= 0,

3. a > 0, lim
t→∞x(t) =∞ since eat →∞ since t→∞.

Example 1.4
A drug is administered every six hours. Let D(n) be the amount of the
drug in the blood system at the nth interval. The body eliminates a certain
fraction p of the drug during each time interval. If the amount administered
is D0, find D(n) and lim

n→∞D(n).

SOLUTION The first step in solving this example is to write down a
difference equation that relates the amount of drug in the patient’s system
D(n + 1) at the time interval (n + 1) with D(n). Now, the amount of drug
D(n+ 1) is equal to the amount D(n) minus the fraction p of D(n) that has
been eliminated from the body plus the new dose D0. This yields

D(n+ 1) = (1− p)D(n) +D0.

From Equations (1.14) and (1.15), we obtain

D(n) = (1 − p)nD0 +D0

(
1− (1− p)n

p

)

=
(

D0 − Do

p

)

(1 − p)n +
Do

p
.

Thus,

lim
n→∞D(n) =

Do

p
.
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Exercises - (1.2–1.4)

1. Find the solution of the difference equation x(n+ 1)− 1
2x(n) = 2,

x(0) = c.

2. Find the solution of the equation x(n+ 1) + 2x(n) = 3, x(0) = 1.

3. (Pielou Logistic Equation). In population biology, the following equa-
tion, commonly called Pielou Logistic equation, is used to model popu-
lations with nonoverlapping generations

x(n+ 1) =
αx(n)

1 + βx(n)

(a) Use the substitution x(n) = 1
z(n) to transform the equation into a

linear equation.

(b) Show that

lim
n→∞ x(n) =






(α− 1)/β if |α| > 1,
0 if α = 1 or |α| < 1,
{x0,−x0/(1 + βx0)} if α = −1.

4. Find the exact solution of the logistic difference equation

x(n+ 1) = 2x(n)(1− x(n)).

(Hint: Let x(n) = 1
2 (1− y(n)), then use iteration)

5. Find the exact solution of the logistic difference equation

x(n+ 1) = 4x(n)(1− x(n)).

(Hint: Let x(n) = sin2 θ(n))

6. The temperature of a body is measured as 100◦F. It is observed that the
temperature change each period of 3 hours is −0.3 times the difference
between the previous period’s temperature and the room temperature,
which is 65◦F.

(a) Write a difference equation that describes the temperature T (n) of
the body at the end of n periods.

(b) Find T (n).

7. Consider the aphids population considered in Example 1.3 with r = 2
3 ,

q = 4, m = 1
4 .
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(a) Find a formula for a(n).

(b) If a(0) = 10, compute a(1), a(2), . . . , a(10).

(c) Draw the time series (n− a(n)) graph.
8. Suppose that in each generation of female aphids, one-third of them is

removed.

(a) Write down the modified difference equation that models the female
aphids.

(b) Draw the time series (n − a(n)) graph for r = 2
3 , q = 4, m = 1

4 ,
a(0) = 10.

9. Suppose that in each generation of female aphids, nine are removed.

(a) Write down the modified difference equation that models the female
aphids.

(b) Draw the time series (n − a(n)) graph for r = 2
3 , q = 4, m = 1

4 ,
a(0) = 10.

In Problems 10–12:

(a) Find the associated difference equation by applying Euler’s algo-
rithm on the given differential equation.

(b) Draw the graph of the solution of the difference equation in
part (a).

(c) Find the exact solution of the given differential equation and draw
its graph on the same plot in part (b).3

10. y′ + 0.5y = 0, y(0) = 0.8, 0 ≤ t ≤ 1, h = 0.2

11. y′ = −y + 1, y(0) = 0, 0 ≤ t ≤ 1, h = 0.25

12. y′ + 2y = 0, y(0) = 0.5, 0 ≤ t ≤ 1, h = 0.1

1.5 Fixed (Equilibrium) Points

In Section 1.4, we were able to obtain closed form solutions of first-order
linear difference equations. In other words, it was possible to write down an
explicit formula for points fn(x0) in the orbit of a point x0 under the linear or

3Optional
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affine map f . However, the situation changes drastically when the map f is
nonlinear. For example, one cannot find a closed form solution for the simple
difference equation (∆E) : x(n + 1) = µx(n)(1 − x(n)), except when µ = 2
or 4. For those of you who are familiar with first-order differential equations,
this may be rather shocking. We may solve the corresponding differential
equation (DE4 : x′(t) = λx(t)(1− x(t))) by simply separating the variables x
and t and then integrating both sides of the equation. The solution of (DE)
may be written in the form

x(t) =
x0e

λt

1 + x0(eλt − 1)
.

Note that the behavior of this solution is very simple: for λ > 0, lim
t→∞ x(t) = 1

and for λ < 0, lim
t→∞x(t) = 0. Unlike those of (DE), the behavior of solu-

tions of (∆E) is extremely complicated and depends very much on the values
of the parameter µ. Since we cannot, in general, solve (∆E), it is impor-
tant to develop qualitative or graphical methods to determine the behavior
of their orbits. Of particular importance is finding orbits that consist of one
point. Such points are called fixed points, or equilibrium points (steady
states).

Let us consider again the difference equation

x(n+ 1) = f(x(n)). (1.20)

DEFINITION 1.1 A point x∗ is said to be a fixed point of the map f
or an equilibrium point of Equation (1.20) if f(x∗) = x∗.

Note that for an equilibrium point x∗, the orbit is a singleton and consists
of only the point x∗. Moreover, to find all equilibrium points of Equation
(1.20), we must solve the equation f(x) = x. Graphically speaking, a fixed
point of a map f is a point where the curve y = f(x) intersects the diagonal
line y = x. For example, the fixed points of the cubic map f(x) = x3 can be
obtained by solving the equation x3 = x or x3−x = 0. Hence, there are three
fixed points -1, 0, 1 for this map (see Fig. 1.5).

Closely related to fixed points are the eventually fixed points. These
are the points that reach a fixed point after finitely many iterations. More
explicitly, a point x is said to be an eventually fixed point of a map f if
there exists a positive integer r and a fixed point x∗ of f such that f r(x) = x∗,
but f r−1(x) 
= x∗.

We denote the set of all fixed points by Fix(f), the set of all eventually
fixed points by EFix(f), and the set of all eventually fixed points of the fixed
points x∗ by EFixx∗(f).

4From Equation (1.7), this DE leads to y(n+1) = y(n) + hλy(n)(1− y(n)) or y(n+ 1) =
(1 + hλ)y(n)[1 − hλ

1+hλ
y(n)]. Now, setting x(n) = hλ

1+hλ
y(n) leads to the above ∆E.
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y=x3

f(x)

(−1,−1)

(0,0)

y=x

x

(1,1)

FIGURE 1.5
The fixed points of f(x) = x3 are the intersection points with the diagonal
line.

Given a fixed point x∗ of a map f , then one can easily construct eventually
fixed points by computing the ancestor set f−1(x∗) = {x 
= x∗ : f(x) = x∗},
f−2(x∗) = {x : f2(x) = x∗}, . . . , f−n(x∗) = {x : fn(x) = x∗}, . . . .

Thus one may show that

EFixx∗(f) = {x : fn(x) = x∗, n ∈ Z
+}. (1.21)

Note that the set EFix(f)\{x∗} may be empty, finite, or infinite as demon-
strated by the following example.

Example 1.5

(i) Consider the logistic map f(x) = 2x(1 − x). Then there are two fixed
points x∗ = 0 and y∗ = 1

2 . A simple computation reveals that

f−1(x) =
1
2
[1±√1− 2x].

Thus f−1
(
1
2

)
= 1

2 and EFixy∗(f)\{
1
2

}
= ∅. Moreover, f−1(0) =

{0, 1}, and EFixx∗(f) = {0, 1}. We conclude that we have only one
“genuine” eventually fixed point, namely x = 1.

(ii) Let us now contemplate a more interesting example, f(x) = 4x(1− x).
There are two fixed points, x∗ = 0, and y∗ = 3

4 . Clearly EFixx∗(f) =
{0, 1}. Notice that f−1(x) = 1

2 [1±
√
1− x]. Hence

f−1
(
3
4

)

=
1
2

[

1±
√

1− 3
4

]

=
1
2

[

1± 1
2

]
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which equals either 3
4 or 1

4 . Now f
−1 (

1
4

)
= 1

2

[
1±

√
1− 1

4

]
which equals

either 1
2

[
1 +

√
3
2

]
or 1

2

[
1−

√
3
2

]
. Repeating this process we may gener-

ate an infinitely many eventually fixed point, that is the set EFixy∗(f)
is infinite. The following diagram shows some of the eventually fixed
points.

1→ 0
1
4
→ 3

4(
1
2
−
√
3
4

)

→ 1
4
→ 3

4
(
1
2
+
√
3
4

)

→ 1
4
→ 3

4


1
2
− 1

2

√

1
2
+
√
3
2



→
[
1
2
−
√
3
2

]

→ 1
4
→ 3

4

It is interesting to note that the phenomenon of eventually fixed points does
not have a counterpart in differential equations, since no solution can reach
an equilibrium point in a finite time.

Next we introduce one of the most interesting examples in discrete dynam-
ical systems: the tent map T .

Example 1.6
(The Tent Map). The tent map T is defined as

T (x) =






2x, for 0 ≤ x ≤ 1
2

2(1− x), for 1
2 < x ≤ 1.

This map may be written in the form

T (x) = 1− 2
∣
∣
∣
∣x−

1
2

∣
∣
∣
∣ .

Note that the tent map is a piecewise linear map (see Fig. 1.6). The tent
map possesses a rich dynamics and in Chapter 3 we show it is in fact “chaotic.”

There are two equilibrium points x∗1 = 0 and x∗2 = 2
3 . Moreover, the point 1

4
is an eventual equilibrium point since T (14 ) =

1
2 , T

2(14 ) = T (12 ) = 1, T 3(14 ) =
T (1) = 0. It is left to you to show that if x = k

2n , where k, and n are positive



18 Discrete Chaos

x*
2

x*
1

T(x) y=x

x
1

FIGURE 1.6
The tent map has two fixed points x∗1 = 0 and x∗2 = 2

3 .

integers with 0 < k
2n ≤ 1, then x is an eventually fixed point (Problem 9).

Numbers of this form are called dyadic rationals.

REMARK 1.1 Note that not every map has a fixed point. For example,
the map f(x) = x+1 has no fixed points since the equation x+1 = x has no
solution.

Now, our mathematical curiosity would lead to the following question: un-
der what conditions does a map have a fixed point? Well, for continuous
maps, there are two simple and interesting results that guarantee the pres-
ence of fixed points.

THEOREM 1.1

Let f : I → I be a continuous map, where I = [a, b] is a closed interval in R.
Then, f has a fixed point.

PROOF Define g(x) = f(x) − x. Then, g(x) is also a continuous map.
If f(a) = a or f(b) = b, we are done. So assume that f(a) 
= a and f(b) 
= b.
Hence, f(a) > a and f(b) < b. Consequently, g(a) > 0 and g(b) < 0. By
the intermediate value theorem,5 there exists a point c ∈ (a, b) with g(c) = 0.
This implies that f(c) = c and c is thus a fixed point of f .

The above theorem says that for a continuous map f if f(I) ⊂ I, then f
has a fixed point in I. The next theorem gives the same assertion if f(I) ⊃ I.

5The intermediate value theorem: Let f : I → I be a continuous map. Then, for any
real number r between f(a) and f(b), there exists c ∈ I such that f(c) = r.
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THEOREM 1.2
Let f : I = [a, b] → R be a continuous map such that f(I) ⊃ I. Then f has
a fixed point in I.

PROOF The proof is left to the reader as Problem 10.

Even if fixed points of a map do exist, it is sometimes not possible to
compute them algebraically. For example, to find the fixed points of the map
f(x) = 2 sinx, one needs to solve the transcendental equation 2 sinx− x = 0.

Clearly x = 0 is a root of this equation and thus a fixed point of the map f .
However, the other two fixed points may be found by graphical or numerical
methods. They are approximately ±1.944795452.

1.6 Graphical Iteration and Stability

One of the main objectives in the theory of dynamical systems is the study
of the behavior of orbits near fixed points, i.e., the behavior of solutions of a
difference equation near equilibrium points. Such a program of investigation
is called stability theory, which henceforth will be our main focus. We begin
our exposition by introducing the basic notions of stability. Let Z+ denote
the set of nonnegative integers.

DEFINITION 1.2 Let f : I → I be a map and x∗ be a fixed point of f ,
where I is an interval in the set of real numbers R. Then

1. x∗ is said to be stable if for any ε > 0 there exists δ > 0 such that
for all x0 ∈ I with |x0 − x∗| < δ we have |fn(x0) − x∗| < ε for all n ∈
Z+. Otherwise, the fixed point x∗ will be called unstable (see Figs. 1.7
and 1.8).

2. x∗ is said to be attracting if there exists η > 0 such that |x0 − x∗| < η
implies lim

n→∞f
n(x0) = x∗ (see Fig. 1.9).

3. x∗ is asymptotically stable6 if it is both stable and attracting (see
Fig. 1.10). If in (2) η =∞, then x∗ is said to be globally asymptot-
ically stable.

Henceforth, unless otherwise stated, “stable” (asymptotically stable) always
means “locally stable” (asymptotically stable).

6In the literature, x∗ is sometimes called a sink.
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FIGURE 1.7
Stable fixed point x∗.

FIGURE 1.8
Unstable fixed point x∗.

FIGURE 1.9
Unstable nonoscillating fixed point
x∗.

FIGURE 1.10
Asymptotically stable fixed point x∗.
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The Cobweb Diagram:

One of the most effective graphical iteration methods to determine the stabil-
ity of fixed points is the cobweb diagram.7 On the x−y plane, we draw the
curve y = f(x) and the diagonal line y = x on the same plot (see Fig. 1.11).

We start at an initial point x0. Then we move vertically until we hit the
graph of f at the point (x0, f(x0)). We then travel horizontally to meet the
line y = x at the point (f(x0), f(x0)). This determines f(x0) on the x axis.
To find f2(x0), we move again vertically until we strike the graph of f at the
point (f(x0), f2(x0)); and then we move horizontally to meet the line y = x at
the point (f2(x0), f2(x0)). Continuing this process, we can evaluate all of the
points in the orbit of x0, namely, the set {x0, f(x0), f2(x0), . . . , fn(x0), . . .}
(see Fig. 1.11).

Example 1.7

Use the cobweb diagram to find the fixed points for the quadratic map
Qc(x) = x2 + c on the interval [−2, 2], where c ∈ [−2, 0]. Then determine
the stability of all fixed points.

SOLUTION To find the fixed point ofQc, we solve the equation x2+c = x
or x2 − x + c = 0. This yields the two fixed points x∗1 = 1

2 − 1
2

√
1− 4c and

x∗2 = 1
2 + 1

2

√
1− 4c. Since we have not developed enough machinery to treat

the general case for arbitrary c, let us examine few values of c. We begin
with c = −0.5 and an initial point x0 = 1.1. It is clear from Fig. 1.12 that
the fixed point x∗1 = 1

2 −
√
3
2 ≈ −0.366 is asymptotically stable, whereas the

second fixed point x∗2 =
1
2 +

√
3
2 ≈ 1.366 is unstable.

Example 1.8

Consider again the tent map of Example 1.6. Find the fixed points and
determine their stability.

SOLUTION The fixed points are obtained by putting 2x = x and 2(1−
x) = x. From the first equation, we obtain the first fixed point x∗1 = 0; and
from the second equation, we obtain the second fixed point x∗2 = 2

3 . Observe
from the cobweb diagram (Fig. 1.13) that both fixed points are unstable.

REMARK 1.2 If one uses the language of difference equations, then in
the Cobweb diagrams, the x-axis is labeled x(n) and the y-axis is labeled
x(n+ 1).

7It is also called the stair-step diagram.



22 Discrete Chaos

FIGURE 1.11
The Cobweb diagram: asymptotically stable fixed point x∗, lim

n→∞f
n(x0) = x∗.

FIGURE 1.12
The Cobweb diagram of Q−0.5: x∗1 is asymptotically stable but x∗2 is unstable.
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FIGURE 1.13
Both equilibrium points x∗1 = 0 and x∗2 =

2
3 are unstable.

Exercises - (1.5 and 1.6)

Use Phaser, Mathematica, or Maple.

1. Find all fixed and eventually fixed points of the map f(x) = |x− 1|.
2. Consider the logistic map Fµ(x) = µx(1 − x).

(a) Draw the cobweb diagram for µ = 2, 2.5, 3.2.

(b) Determine the stability of the equilibrium points for the values of
µ in part (a).

3. (a) Find a function with four fixed points, all of which are unstable.

(b) Find a function with no fixed points.

(c) Find a function with a stable and an unstable fixed point.

4. Find the equilibrium points and determine their stability for the map
f(x) = 5− 6

x .

5. Pielou’s logistic equation. Pielou referred to the following equation
as the discrete logistic equation:

x(n+ 1) =
αx(n)

1 + βx(n)
, α > 1, β > 0.

(a) Find the positive equilibrium point.

(b) Demonstrate, using the cobweb diagram, that the positive equilib-
rium point is asymptotically stable for α = 2 and β = 1.
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6. Newton’s method for computing the square root of a positive
number. The equation x2 = b can be written in the form x = 1

2 (x+
b
x).

This form leads to Newton’s method:

x(n+ 1) =
1
2

(

x(n) +
b

x(n)

)

.

(a) Show that this difference equation has two equilibrium points, −√b
and

√
b.

(b) Sketch cobweb diagrams for b = 3; x0 = 1, x0 = −1.
(c) What can you conclude from part (b)?

(d) Investigate the case when b = −3 and try to form an explanation
of your results.

7. Consider the difference equation x(n+ 1) = f(x(n)), where f(0) = 0.

(a) Prove that x(n) ≡ 0 is a solution of the equation.

(b) Show that the function depicted in Fig. 1.14 cannot possibly be a
solution of the equation.

FIGURE 1.14
Problem 7(b)

8. Consider the family of quadratic maps Qc(x) = x2 + c, where c is a
parameter.

(a) Draw the cobweb diagram for c > 1
4 , c =

1
4 , or c <

1
4 .

(b) Determine the stability of the fixed points for the values of c in
part (a).

9. Show that if x = k
2n , where k and n are positive integers with 0 < k

2n ≤
1, then x is an eventually fixed point of the tent map (see Example 1.6).
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10. Prove Theorem 1.2.

In Problems 11–14, determine the stability of the fixed points of the maps
using the Cobweb-diagram.

11. f(x) = 0.5 sin(πx)

12. f(x) = x+ 1
π sin(2πx)

13. f(x) = 2xe−x

14. A population of birds is modeled by the difference equation

x(n+ 1) =

{
3.2x(n) for 0 ≤ x(n) ≤ 1,
0.5x(n) + 2.7 for x(n) > 1.

where x(n) is the number of birds in year n. Find the equilibrium points
and then determine their stability.

1.7 Criteria for Stability

In this section, we will establish some simple but powerful criteria for local
stability of fixed points. Fixed (equilibrium) points may be divided into two
types: hyperbolic and nonhyperbolic. A fixed point x∗ of a map f is said
to be hyperbolic if |f ′(x∗)| 
= 1. Otherwise, it is nonhyperbolic. We will
treat the stability of each type separately.

1.7.1 Hyperbolic Fixed Points

The following result is the main tool in detecting local stability.

THEOREM 1.3

Let x∗ be a hyperbolic fixed point of a map f , where f is continuously differ-
entiable at x∗. The following statements then hold true:

1. If |f ′(x∗)| < 1, then x∗ is asymptotically stable.

2. If |f ′(x∗)| > 1, then x∗ is unstable.

PROOF 1. Suppose that |f ′(x∗)| < M < 1 for some M > 0. Then,
there is an open interval I = (x∗ − ε, x∗ + ε) such that |f ′(x)| ≤ M < 1 for
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all x ∈ I (Why? Problem 10). By the mean value theorem,8 for any x0 ∈ I,
there exists c between x0 and x∗ such that

|f(x0)− x∗| = |f(x0)− f(x∗)| = |f ′(c)||x0 − x∗| ≤M |x0 − x∗|. (1.22)

Since M < 1, inequality (1.22) shows that f(x0) is closer to x∗ than x0.
Consequently, f(x0) ∈ I. Repeating the above argument on f(x0) instead of
x0, we can show that

|f2(x0)− x∗| ≤M |f(x0)− x∗| ≤M2|x0 − x∗|. (1.23)

By mathematical induction, we can show that for all n ∈ Z+,

|fn(x0)− x∗| ≤Mn|x0 − x∗|. (1.24)

To prove the stability of x∗, for any ε > 0, we let δ = min(ε, ε̃). Then,
|x0 − x∗| < δ implies that |fn(x0)− x∗| ≤Mn|x0− x∗| < ε, which establishes
stability. Furthermore, from Inequality (1.24) lim

n→∞ |f
n(x0)−x∗| = 0 and thus

lim
n→∞ f

n(x0) = x∗, which yields asymptotic stability. The proof of part 2 is

left to you as Problem 14.

The following examples illustrate the applicability of the above theorem.

Example 1.9
Consider the map Gλ(x) = 1 − λx2 defined on the interval [−1, 1], where
λ ∈ (0, 2]. Find the fixed points of Gλ(x) and determine their stability.

SOLUTION To find the fixed points of Gλ(x) we solve the equation
1− λx2 = x or λx2 + x− 1 = 0. There are two fixed points:

x∗1 =
−1−√1 + 4λ

2λ
and x∗2 =

−1 +√1 + 4λ
2λ

.

Observe that G′
λ(x) = −2λx. Thus, |G′

λ(x
∗
1)| = 1 +

√
1 + 4λ > 1, and hence,

x∗1 is unstable for all λ ∈ (0, 2]. Furthermore, |G′
λ(x

∗
2)| =

√
1 + 4λ − 1 < 1 if

and only if
√
1 + 4λ < 2. Solving the latter inequality for λ, we obtain λ < 3

4 .
This implies by Theorem 1.3 that the fixed point x∗2 is asymptotically stable if
0 < λ < 3

4 and unstable if λ > 3
4 (see Fig. 1.15). When λ = 3

4 , G
′
λ(x

∗
2) = −1.

This case will be treated in Section 1.7.2.

8The mean value theorem. If f is continuous on the closed interval [a, b] and is
differentiable on the open interval (a, b), then there is a number c in (a, b) such that

f ′(c) = f(b)−f(a)
b−a . This implies that |f(b) − f(a)| = |f ′(c)||b− a|.
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FIGURE 1.15
(a) λ = 1

2 , x
∗
2 is asymptotically stable while (b) λ = 3

2 , x
∗
2 is unstable.

Example 1.10

(Raphson-Newton’s Method). Raphson-Newton’s method is one of the
simplest and oldest numerical methods for finding the roots of the equation
g(x) = 0. The Newton algorithm for finding a zero r of g(x) is given by the
difference equation

x(n+ 1) = x(n) − g(x(n))
g′(x(n))

. (1.25)

where x(0) = x0 is our initial guess of the root r. Equation (1.25) is of the
form of Equation (1.20) with

fN (x) = x− g(x)
g′(x)

(1.26)

where fN is called Newton’s function.

THEOREM 1.4 (Taylor’s Theorem)

Let f be differentiable of all orders at x0. Then

f(x) = f(x0) + (x− x0)f ′(x0) + (x− x0)2
2!

f ′′(x0) + . . .

for all x in a small open interval containing x0.

Formula (1.25) may be justified using Taylor’s Theorem. A linear approxi-
mation of f(x) is given by the equation of the tangent line to f(x) at x0:

f(x) = f(x0) + (x− x0)f ′(x0).
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The intersection of this tangent line with the x-axis produces the next point
x1 in Newton’s algorithm (Fig. 1.16). Letting f(x) = 0 and x = x1 yields

x1 = x0 − f(x0)
f ′x0)

.

By repeating the process, replacing x0 by x1, x1 by x2, . . . , we obtain formula
(1.25).

We observe first that if r is a root of g(x), i.e., g(r) = 0, then from Equation
(1.26) we have fN(r) = r and thus r is a fixed point of fN (assuming that
g′(r) 
= 0). On the other hand, if x∗ is a fixed point of fN , then from Equation
(1.26) again we get g(x∗)

g′(x) = 0. This implies that g(x∗) = 0, i.e., x∗ is a zero
of g(x). Now, starting with a point x0 close to a root r of g(x) = 0, then
Algorithm (1.25) gives the next approximation x(1) of the root r. By applying
the algorithm repeatedly, we obtain the sequence of approximations

x0 = x(0), x(1), x(2), . . . , x(n), . . .

(see Fig. 1.16). The question is whether or not this sequence converges to the
root r. In other words, we need to check the asymptotic stability of the fixed
point x∗ = r of fN . To do so, we evaluate f ′N(r) and then use Theorem 1.3,

|f ′N (r)| =
∣
∣
∣
∣1−

[g′(r)]2 − g(r)g′′(r)
[g′(r)]2

∣
∣
∣
∣ = 0, since g(r) = 0.

Hence, by Theorem 1.3, lim
n→∞x(n) = r, provided that x0 is sufficiently close

to r.
For g(x) = x2−1, we have two zero’s −1, 1. In this case, Newton’s function

is given by fN (x) = x− x2−1
2x = x2+1

2x . The cobweb diagram of fN shows that
Newton’s algorithm converges quickly to both roots (see Fig. 1.17).

1.7.2 Nonhyperbolic Fixed Points

The stability criteria for nonhyperbolic fixed points are more involved. They
will be summarized in the next two results, the first of which treats the case
when f ′(x∗) = 1 and the second for f ′(x∗) = −1.

THEOREM 1.5
Let x∗ be a fixed point of a map f such that f ′(x∗) = 1. If f ′(x), f ′′(x), and
f ′′′(x) are continuous at x∗, then the following statements hold:

1. If f ′′(x∗) 
= 0, then x∗ is unstable (semistable).9

9See the definition in Problem 17. The assumption that f ′′′(x) is continuous at x∗ is not
needed in part 1.
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FIGURE 1.16
Newton’s method for g(x) = x2 − 1.

FIGURE 1.17
Cobweb diagram for Newton’s function fN when g(x) = x2 − 1.
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2. If f ′′(x∗) = 0 and f ′′′(x∗) > 0, then x∗ is unstable.

3. If f ′′(x∗) = 0 and f ′′′(x∗) < 0, then x∗ is asymptotically stable.

PROOF 1. Assume that f ′(x∗) = 1 and f ′′(x∗) 
= 0. Then, the curve y =
f(x) is either concave upward (f ′′(x∗) > 0) or concave downward (f ′′(x∗) <
0), as shown in Fig. 1.18(a) and (b). Now, if f ′′(x∗) > 0, then f ′(x) is
increasing in a small interval containing x∗. Hence, f ′(x) > 1 for all x ∈
(x∗, x∗ + δ), for some small δ > 0 [see Fig. 1.18(a)]. Using the same proof
as in Theorem 1.3, we conclude that x∗ is unstable. Similarly, if f ′′(x∗) < 0
then f ′(x) is decreasing in a small neighborhood of x∗. Therefore, f ′(x) > 1
for all x ∈ (x∗ − δ, x∗), for some small δ > 0, and again we conclude that
x∗ is unstable [see Fig. 1.18(b)]. Proofs of parts 2 and 3 are left to you as
Problem 15.

Example 1.11

Let f(x) = −x3 + x. Then x∗ = 0 is the only fixed point of f . Note that
f ′(0) = 1, f ′′(0) = 0, f ′′′(0) < 0. Hence by Theorem 1.5, 0 is asymptotically
stable.

The preceding theorem may be used to establish stability criteria for the
case when f ′(x∗) = −1. But before doing so, we need to introduce the notion
of the Schwarzian derivative.

DEFINITION 1.3 The Schwarzian derivative, Sf , of a function f is
defined by

Sf(x) =
f ′′′(x)
f ′(x)

− 3
2

[
f ′′(x)
f ′(x)

]2
. (1.27)

And if f ′(x∗) = −1, then

Sf(x∗) = −f ′′′(x∗)− 3
2
[f ′′(x∗)]2. (1.28)

THEOREM 1.6

Let x∗ be a fixed point of a map f such that f ′(x∗) = −1. If f ′(x), f ′′(x),
and f ′′′(x) are continuous at x∗, then the following statements hold:

1. If Sf(x∗) < 0, then x∗ is asymptotically stable.

2. If Sf(x∗) > 0, then x∗ is unstable.
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FIGURE 1.18
(a) f ′(x∗) = 1, f ′′(x∗) > 0, unstable fixed point, semi-stable from the left.
(b) f ′(x∗) = 1, f ′′(x∗) < 0, unstable fixed point, semi-stable from the right.
(c) f ′(x∗) = 1, f ′′(x∗) = 0, f ′′′(x∗) > 0, unstable fixed point.
(d) f ′(x∗) = 1, f ′′(x∗) = 0, f ′′′(x∗) < 0, asymptotically stable fixed point.
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FIGURE 1.19
An asymptotically stable nonhyperbolic fixed point x∗2.

PROOF The main idea of the proof is to create an associated function
g with the property that g′(x∗) = 1, so that we can use Theorem 1.5. This
function is indeed g = f ◦ f = f2. Two important facts need to be observed
here. First, if x∗ is a fixed point of f , then it is also a fixed point of g.
Second, if x∗ is asymptotically stable (unstable) with respect to g, then it is
also asymptotically stable (unstable) with respect to f (Why? Problem 16).
By the chain rule:

g′(x) =
d

dx
f(f(x)) = f ′(f(x))f ′(x). (1.29)

Hence,
g′(x∗) = [f ′(x∗)]2 = 1

and Theorem 1.5 now applies. For this reason we compute g′′(x∗). From
Equation (1.29), we have

g′′(x) = f ′(f(x))f ′′(x) + f ′′(f(x))[f ′(x)]2 (1.30)
g′′(x∗) = f ′(x∗)f ′′(x∗) + f ′′(x∗)[f ′(x∗)]2

= 0 (since f ′(x∗) = −1). (1.31)

Computing g′′′(x) from Equation 1.31, we get

g′′′(x∗) = −2f ′′′(x∗)− 3[f ′′(x∗)]2. (1.32)

It follows from Equation (1.29)

g′′′(x∗) = 2Sf(x∗) (1.33)
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Statements 1 and 2 now follow immediately from Theorem 1.5.

REMARK 1.3 Note that if f ′(x∗) = −1 and g = f ◦ f , then from (1.31)
we have

Sf(x∗) =
1
2
g′′′(x∗). (1.34)

Furthermore,

g′′(x∗) = 0. (1.35)

We are now ready to give an example of a nonhyperbolic fixed point.

unstable
stable

asymptotically

stablesemistable
unstable unstable

nonoscillator oscillator
nonhyperbolicnonhyperbolic

unstableasymptotically
stable

unstable
semistable

stable
unstable

unstable
stable

asymptotically

unstable

asymptotically

asymptotically

asymptotically
stable

f(x∗) = x∗

|f′(x∗)| < 1 |f′(x∗)| > 1

f′(x∗)

f′(x∗) = 1

f′′(x∗)

f′′(x∗) �= 0

f′′(x∗) = 0

f′′′(x∗) < 0 f′′′(x∗) > 0

f′′′(x∗)

f′′′(x∗) = 0

f(4)(x∗)

f(4)(x∗) �= 0

f(4)(x∗) = 0

f(5)(x∗)

f(5)(x∗) < 0 f(5)(x∗) > 0

f(5)(x∗) = 0

f(x∗) = −1

S1f(x∗)

S1f(x∗) < 0 S1f(x∗) > 0

S1f(x∗) = 0

S2f(x∗)

S2f(x∗) < 0 S2f(x∗) > 0

S2f(x∗) = 0

S3f(x∗)

S3f(x∗) < 0 S3f(x∗) > 0

S3f(x∗) = 0

FIGURE 1.20
Classification of fixed points.
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Example 1.12
Consider the map f(x) = x2+3x on the interval [-3, 3]. Find the equilibrium
points and then determine their stability.

SOLUTION The fixed points of f are obtained by solving the equation
x2 + 3x = x. Thus, there are two fixed points: x∗1 = 0 and x∗2 = −2. So
for x∗1, f

′(0) = 3, which implies by Theorem 1.3 that x∗1 is unstable. For x∗2,
we have f ′(−2) = −1, which requires the employment of Theorem 1.6. We
observe that

Sf(−2) = −f ′′′(−2)− 3
2
[f ′′(−2)]2 = −6 < 0.

Hence, x∗2 is asymptotically stable (see Fig. 1.19).

Diagram 1.20 provides a complete classification of fixed points which goes
beyond the material in this section. Detailed analysis of the contents in the
diagram may be found in [22].

In [22] the cases when Sf(x∗) = 0 and f ′′′(x∗) = 0 were investigated. In
the diagram, we have S1f(x) = Sf(x), S2f(x) = 1

2g
(5)(x), where g = f2, and

more generally Skf(x) = 1
2g(2k + 1)(x).

Exercises - (1.7)

In Problems 1–8, find the fixed points and determine their stability.

1. f(x) = x2

2. f(x) = 1
2x

3 + 1
2x

3. f(x) = 3x(1− x)
4. f(x) = tan−1(x)

5. f(x) = xe1.5(1 − x)

6. f(x) =






0.8x; if x ≤ 1
2

0.8(1− x); if x > 1
2

7. f(x) = −x3 − x

8. f(x) =






2x; if 0 ≤ x ≤ 1
2

2x− 1; if 1
2 < x ≤ 1
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9. Find the equilibrium points of the equation

x(n+ 1) =
αx(n)

1 + βx(n)
, α > 1, β > 0.

Then determine the values of the parameters α and β for which a given
equilibrium point is asymptotically stable or unstable.

10. Assume that f is continuously differentiable at x∗. Show that if |f ′(x∗)| <
1, for a fixed point x∗ of f , then there exists an interval I = (x∗−ε, x∗+ε)
such that |f ′(x)| ≤M < 1 for all x ∈ I and for some constant M .

11. Let f(x) = ax2 + bx+ c, a 
= 0, and x∗ be a fixed point of f . Prove the
following statements:

(a) If f ′(x∗) = 1, then x∗ is unstable.

(b) If f ′(x∗) = −1, then x∗ is asymptotically stable.

12. Suppose that for a root x∗ of a function g, we have g(x∗) = g′(x∗) = 0
where g′′(x∗) 
= 0 and g′′(x) is continuous at x∗. Show that its Newton
function fN , defined by Equation (1.26), is defined on x∗. (Hint: Use
L’Hopital’s rule.)

13. Find the equilibrium points of the equation

x(n+ 1) = αx(n)
(
1 + α
α

− x(n)
)

.

Then determine the values of the parameter α for which a given equi-
librium point is asymptotically stable or unstable.

14. Prove Theorem 1.3, part 2.

15. Prove Theorem 1.5, parts 2 and 3.

16. Let x∗ be a fixed point of a continuous map f . Show that if x∗ is asymp-
totically stable with respect to the map g = f2, then it is asymptotically
stable with respect to the map f .

17. Semistability definition: A fixed point x∗ of a map f is semistable
(from the right) if for any ε > 0 there exists δ > 0 such that if 0 <
x0 − x∗ < δ then |fn(x0) − x∗| < ε for all n ∈ Z+. If, in addition,
lim

n→∞ f
n(x0) = x∗ whenever 0 < x0 − x∗ < η for some η > 0, then x∗

is said to be semiasymptotically stable (from the right). Semistability
(semiasymptotic stability) from the left is defined analogously. Suppose
that f ′(x∗) = 1 and f ′′(x∗) 
= 0. Prove that x∗ is

(a) Semiasymptotically stable from the right if f ′′(x∗) < 0.
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(b) Semiasymptotically stable from the left if f ′′(x∗) > 0.

In Problems 18 and 19, determine whether or not the fixed point x∗ = 0
is semiasymptotically stable from the left or from the right.

18. f(x) = x3 + x2 + x

19. f(x) = x3 − x2 + x

1.8 Periodic Points and their Stability

The notion of periodicity is one of the most important notion in the field of
dynamical systems. Its importance stems from the fact that many physical
phenomena have certain patterns that repeat themselves. These patterns
produce cycles (or periodic cycles), where a cycle is understood to be the
orbit of a periodic point. In this section, we address the questions of existence
and stability of periodic points.

DEFINITION 1.4 Let x be in the domain of a map f . Then,

1. x is said to be a periodic point of f with period k if fk(x) = x for
some positive integer k. In this case x may be called k-periodic. If in
addition f r(x) 
= x for 0 < r < k, then k is called the minimal period
of x. Note that x is k-periodic if it is a fixed point of the map fk.

2. x is said to be an eventually periodic point of a period k and delay
m if fk+m(x) = fm(x) for some positive integer k and m ∈ Z+ (see
Fig. 1.21). Notice that if k = 1, then f(fm(x)) = fm(x) and x is then
an eventually fixed point, and if m = 0, then x is k-periodic. In other
words, x is eventually periodic if fk(x) is periodic, for some positive
integer k.

The orbit of a k-periodic point is the set

O(x) = {x, f(x), f2(x), . . . , fk−1(x)}
and is often called a k-periodic cycle. Graphically, a k-periodic point is the
x coordinate of a point at which the graph of the map fk meets the diagonal
line y = x.

Next we turn our attention to the question of stability of periodic points.

DEFINITION 1.5 Let x be a periodic point of f with minimal period k.
Then,
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FIGURE 1.21
An eventually periodic point x : The orbit of x goes into a 2-periodic cycle
{x1, x2}.

1. x is stable if it is a stable fixed point of fk.

2. x is asymptotically stable if it is an asymptotically stable fixed point
of fk.

3. x is unstable if it is an unstable fixed point of fk.

Thus, the study of the stability of k-periodic solutions of the difference
equation

x(n+ 1) = f(x(n)) (1.36)

reduces to studying the stability of the equilibrium points of the associated
difference equation

y(n+ 1) = g(y(n)) (1.37)

where g = fk.
The next theorem gives a practical criteria for the stability of periodic points

based on Theorem 1.3 in the preceding section.

THEOREM 1.7
Let O(x) = {x, f(x), . . . , fk−1(x)} be the orbit of the k-periodic point x, where
f is a continuously differentiable function at x. Then the following statements
hold true:
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1. x is asymptotically stable if

|f ′(x1)f ′(f(x2)) . . . f ′(fk−1(xk))| < 1. (1.38)

2. x is unstable if

|f ′(x)f ′(f(x)) . . . f ′(fk−1(x))| > 1. (1.39)

PROOF By using the chain rule, we can show that

d

dx
fk(x) = f ′(x)f ′(f(x)) . . . f ′(fk−1(x)).

Conditions (1.38) and (1.39) now follow immediately by application of Theo-
rem 1.3 to the composite map g = fk.

Example 1.13
Consider the difference equation x(n+ 1) = f(x(n)) where f(x) = 1 − x2 is
defined on the interval [-1, 1]. Find all the 2-periodic cycles, 3-periodic cycles,
and 4-periodic cycles of the difference equation and determine their stability.

SOLUTION First, let us calculate the fixed points of f out of the way.
Solving the equation x2 + x − 1 = 0, we find that the fixed points of f are
x∗1 = − 1

2 −
√
5
2 and x∗2 = − 1

2 +
√
5
2 . Only x∗2 is in the domain of f . The fixed

point x∗2 is unstable. To find the two cycles, we find f2 and put f2(x) = x.
Now, f2(x) = 1− (1− x2)2 = 2x2 − x4 and f2(x) = x yields the equation

x(x3 − 2x+ 1) = x(x − 1)(x2 + x− 1) = 0.

Hence, we have the 2-periodic cycle {0, 1}; the other two roots are the fixed
points of f . To check the stability of this cycle, we compute |f ′(0)f ′(1)| =
0 < 1. Hence, by Theorem 1.7, the cycle is asymptotically stable (Fig. 1.22).

Next we search for the 3-periodic cycles. This involves solving algebraically
a sixth-degree equation, which is not possible in most cases. So, we resort
to graphical (or numerical) analysis. Figure 1.23 shows that there are no 3-
periodic cycles. Moreover, Fig. 1.24 shows that there are no 4-periodic cycles.
Later, in Chapter 2, we will prove that this map has no periodic points other
than the above 2-periodic cycle.

Since f−1(x) =
√
1− x, it follows that the point f−1(x∗2) =

√
3−√

5
2 is an

eventually fixed point. Let g = f2. Then g−1(x) =
√
1 +

√
1− x. Now

g−1(0) =
√
2 which is outside the domain of f . Hence f has no eventually

periodic points.
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FIGURE 1.22
(a) A 2-periodic cycle {x1, x2}; (b) Periodic points of f : x1, and x2 are fixed
points of f2; (c) Periodic points of f : x1, and x2 are asymptotically stable
fixed points of f2.

FIGURE 1.23
f3 has no “genuine” fixed points, it has a fixed point x∗ which is a fixed point
of f , f has no points of period 3.
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FIGURE 1.24
f4 has no “genuine” fixed points, it has three fixed points, a fixed point x∗ of
f and two fixed points x1, x2 of f2, f has no 4-periodic cycles.

Example 1.14
(The Tent Map Revisited). The tent map T is defined as

T (x) =






2x; 0 ≤ x ≤ 1
2

2(1− x); 1
2 < x ≤ 1.

It may be written in the compact form

T (x) = 1− 2
∣
∣
∣
∣x−

1
2

∣
∣
∣
∣ .

Find all the 2-periodic cycles and the 3-periodic cycles of T and determine
their stability.

SOLUTION First, we observe that the fixed points of T are x∗1 = 0 and
x∗2 = 2

3 ; they are unstable since |T ′| = 2. To find the 2-periodic cycles, we
compute T 2. After some computation, we obtain

T 2(x) =






4x; 0 ≤ x < 1
4

2(1− 2x); 1
4 ≤ x < 1

2

4(x− 1
2 );

1
2 ≤ x < 3

4

4(1− x); 3
4 ≤ x ≤ 1.


