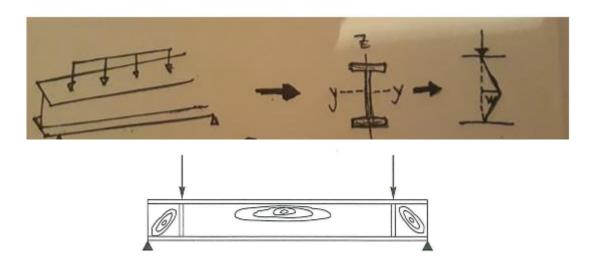
License en génie civil Département : Génie civil et Hydraulique

Module: Construction métallique

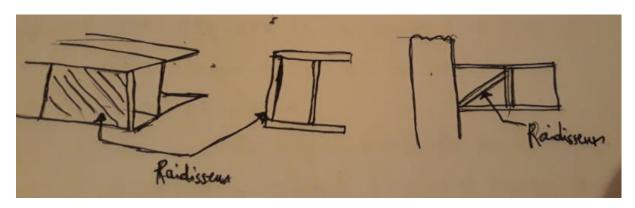

Semestre: 06. 2022 / 2023
Enseignante: DROUNA. K

Chapitre 04: Le voilement (1)

1- Définition :

Le voilement est un phénomène de déformation qui affecte l'âme d'une poutre soumise au même temps à des contraintes de compression et des contraintes de cisaillement (l'effort tranchant).

Les âmes des poutres utilisées en construction métallique sont généralement minces et donc susceptibles de se voiler.


- ightharpoonup Si la poutre est soumise à une faible contrainte σ_Z , on impose à l'âme une déformation « « w » où elle va revenir à sa position initiale après la suppression de la charge.
- ightharpoonup Si σ_Z dépasse une certaine limite σ_{cr} , la poutre peut devenir instable (L'axe garde sa déformée finale). σ_{cr} est appelée contrainte critique de voilement élastique.
- Les essais montrent que les âmes voilées résistent encore à des efforts additionnels c'est-à-dire, le voilement ne conduit pas à une ruine rapide des pièces.
- Pour éviter le voilement des âmes des poutres, il faut :
 - Soit augmenter l'épaisseur de l'âme.
 - Soit disposer des raidisseurs d'âme.

License en génie civil

Module: Construction métallique

Département : Génie civil et Hydraulique

Semestre: 06. 2022 / 2023 Enseignante: DROUNA. K

2- **But:** est de dimensionner l'âme et les raidisseurs d'une poutre pour que cette poutre soit stable.

3- Critères de vérification :

La contrainte critique élastique au voilement par cisaillement est défini par.

$$\tau_{cr} = K_{\tau} \frac{\pi^2 E}{12(1-v^2)} (\frac{t_w}{d})^2$$

La résistance au voilement par cisaillement doit être vérifier si :

Avec:

d : La hauteur de l'âme entre semelles.

t_w: L'épaisseur de l'âme.

 K_{τ} : Coefficient de voilement par cisaillement.

On définit : $\Lambda_W = \frac{d}{t_w}$: l'élancement de l'âme.

- Remarque:
 - Si on vérifie les caractéristiques géométriques de tous les profilés : IPE, HEA, HEB (h = 600mm max), on trouve que $\frac{d}{t_w}$ > 69 ε , ce qui signifie que la vérification au voilement n'est pas nécessaire.
 - Par contre, les âmes des profilés reconstitués soudés (PRS) sont très sensibles au voilement (poutres d'ouvrages d'art, des parois de réservoirs, des silos).

License en génie civil

Département : Génie civil et Hydraulique Module: Construction métallique 2022 / 2023 Semestre: 06.

Enseignante: DROUNA. K

4- Méthode de calcul:

Ils existent deux méthodes de calcul:

1- La méthode post - critique simple : peut-être utiliser pour tout les cas ;

2- <u>La méthode du champs diagonal de traction</u> : elle est utilisée lorsque les âmes comportent des raidisseurs transversaux à condition que :

$$1 \le a/d \le 3$$

d: la hauteur d'âme entre semelles.

a: l'écartement entre les raidisseurs

4-1- Méthode post – critique simple :

Il faut vérifier que l'effort tranchant de calcul est inférieur à l'effort tranchant résistant. Donc :

$$V < V_{be}$$

Avec:

$$V_{be} = d.t_w.^{\tau_{be}}/\gamma_{m1}$$

 au_{be} : est la contrainte moyenne de cisaillement, qui est fonction de l'élancement De l'âme $\bar{\Lambda}_w$ Qui vaut:

$\overline{\lambda}_w$			$\overline{\lambda}_{w} \le 0.8$	$0.8 \le \overline{\lambda}_w < 1.2$	$\overline{\lambda}_{w} \geq 1,2$
₹ba			$\frac{f_{yw}}{\sqrt{3}}$	$[1-0,625 (\overline{\lambda}_w - 0,8)]$	$\frac{f_{yw}}{\sqrt{3}}$ $\frac{0.9}{\overline{\lambda}_w} \frac{f_{yw}}{\sqrt{3}}$
		4	τ _{be} (N/mm²)		
S.235	S.275	S.355			
136	159	205			
102	119	154			
					_
		7		0,8 1,2	2 λ _w

Département : Génie civil et Hydraulique

Semestre: 06. 2022 / 2023 Enseignante: DROUNA. K

• Calcul de l'élancement réduit $\bar{\Lambda}_w$ de l'âme :

$$\bar{\Lambda}_{w} = \sqrt{\frac{\frac{f_{y}}{\sqrt{3}} \left[12 - \mathbf{v}^{2}\right]}{K_{\tau} \, \pi^{2} \, E\left(\frac{t_{w}}{d}\right)^{2}}}$$

Si on pose : E = 210000 MPa,

$$\boldsymbol{v} = 0.3, \qquad f_y = \frac{235}{\varepsilon^2}$$

On obtient:

$$\bar{\Lambda}_{w} = \frac{\frac{d}{t_{w}}}{37.4 \, \varepsilon \sqrt{K_{\tau}}}$$

 K_{τ} : coefficient de voilement par cisaillement, sa valeur est : voir tableau 1.

Raidisseur interr	Valeurs de $k_{\rm t}$	
Sans	$k_{\rm r} = 5.34$	
Avec	a/d<1	$k_{\tau} = 4 + \frac{5,34}{(a/d)^2}$
Avec	a/d≥1	$k_{\rm t} = 5.34 + \frac{4}{(a / o)^2}$

Remarques:

- Si la pièce est soumise à un effort axial N et à un moment fléchissant ; on a deux cas :
 - A. Si V > 0, 5 V_{be} : il faut vérifier

$$M \le M_f + (M_{pl} - M_f) \left[1 - \left(\frac{2V}{V_{be}} - 1 \right)^2 \right]$$

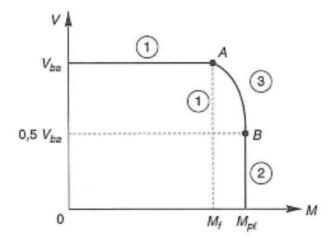
B. Si $V \le 0$,5 V_{be} : il n'est pas nécessaire de vérifier le moment et l'effort axial pour tenir compte de l'effort tranchant.

On a:

$$M_f = M_f^{\circ} \left(1 - \frac{N}{N_f} \right)$$

 M_f° : Moment M_f en l'absence de N.

License en génie civil Département : Génie civil et Hydraulique


Module : Construction métallique **Semestre :** 06. 2022 / 2023 **Enseignante :** DROUNA. K

 $N_f = 2A_f \cdot f_y$: effort axial plastique avec A_f : section de semelle.

 M_f : Moment résistant plastique de la section constituée des semelles seules.

 M_{pl} : Moment plastique résistant de la section totale (semelle + âme)

• En présence d'un effort N : dans ce cas on remplace M_{pl} par le moment réduit de résistance M_N .

