4. Temps d'arrêt

Soit $(\Omega, \mathcal{A}, (\mathcal{F}_n)_{n \in \mathbb{N}}, \mathbb{P})$ est un espace probabilisé filtré. On pose

$$\mathcal{F}_{\infty} = \sigma(\cup_{n>0} \mathcal{F}_n).$$

Définition 11. Une variable aléatoire $T:\Omega\to\overline{\mathbb{N}}=\mathbb{N}\cup\{\infty\}$ est appelée temps d'arrêt si pour tout entier $n\in\mathbb{N}$, on a

$$\{T=n\}\in\mathcal{F}_n.$$

Il est facile de voir que cela équivaut à $\{T \leq n\} \in \mathcal{F}_n$ ou encore $\{T > n\} \in \mathcal{F}_n$. De plus cela entraı̂ne facilement que $\{T < n\} \in \mathcal{F}_{n-1}$ et $\{T \geq n\} \in \mathcal{F}_{n-1}$.

Il est important de remarquer que la valeur $+\infty$ est autorisée. En écrivant

$$\{T = +\infty\} = \Omega \setminus \bigcup_{n > 0} \{T = n\}$$

on voit que $\{T = +\infty\} \in \mathcal{F}_{\infty}$.

Exemples:

- (i) Si $k \in \mathbb{N}$, le temps constant T = k est évidemment un temps d'arrêt.
- (ii) Soit $(X_n)_{n\in\mathbb{N}}$ un processus adapté à valeurs dans (E,\mathcal{B}) . Pour $B\in\mathcal{B}$ on pose

$$T_B = \left\{ \begin{array}{ll} \inf\{n \in \mathbb{N} \ : \ X_n \in B\} & \text{si } \{n \in \mathbb{N} \ : \ X_n \in B\} \neq \emptyset \\ +\infty & \text{sinon} \end{array} \right.$$

est un temps d'arrêt, appelé temps d'entrée dans B. En général on omet la deuxième partie de la définition et on prend juste la convention inf $\emptyset = +\infty$. Ce résultat est évident car

$$\{T_B = n\} = \{X_0 \notin B, X_1 \notin B, \dots, X_{n-1} \notin B, X_n \in B\} \in \mathcal{F}_n.$$

Proposition 12. Soit S et T deux temps d'arrêt. Alors, S+T, $S \wedge T$ et $S \vee T$ sont des temps d'arrêts. En particulier, pour $k \in \mathbb{N}$, $T \wedge k$ est un temps d'arrêt borné.

Par généralisation on a, $si = (T_k)_{k \ge 0}$ est une suite de temps d'arrêt, alors inf T_k , sup T_k , lim inf T_k et lim sup T_k sont aussi des temps d'arrêt.

DÉMONSTRATION. Il suffit de remarquer que

$$\{S + T = n\} = \bigcup_{0 \le k \le n} \{S = k\} \cap \{T = n - k\}$$

$$\{S \wedge T \le n\} = \{S \le n\} \cup \{T \le n\}$$

$$\{S \vee T \le n\} = \{S \le n\} \cap \{T \le n\}$$

et par exemple $\{\inf T_k \le n\} = \bigcup \{T_k \le n\}$ et $\{\liminf T_k \le n\} = \bigcup_{m \in \mathbb{N}} \cap_{k > m} \{T_k \le n\}.$

Définition 13. Si T est un temps d'arrêt, on appelle tribu des événements antérieurs à T la tribu suivante

$$\mathcal{F}_T = \{ A \in \mathcal{F}_{\infty} : \forall n \in \mathbb{N}, A \cap \{ T = n \} \in \mathcal{F}_n \}$$

Elle vérifie : si T = n alors $\mathcal{F}_T = \mathcal{F}_n$.

On peut vérifier que T est une variable aléatoire \mathcal{F}_T -mesurable. En effet, pour tout entier $k \geq 0$, on a pour tout $n \geq 0$, $\{T = k\} \cap \{T = n\}$ est égal à $\{T = n\} \in \mathcal{F}_n$ si k = n, où est égal à l'ensemble vide; d'où $\{T = k\} \in \mathcal{F}_T$.

Proposition 14. Soit S et T deux temps d'arrêt. Alors :

$$S \leq T \Rightarrow \mathcal{F}_S \subset \mathcal{F}_T$$

DÉMONSTRATION. Soit $A \in \mathcal{F}_S$. Alors on a

$$A \cap \{T = n\} = \bigcup_{k=0}^{n} [A \cap \{S = k\} \cap \{T = n\}]$$

Or $A \cap \{S = k\} \in \mathcal{F}_k \subset \mathcal{F}_n$, d'où par passage à la réunion $A \cap \{T = n\} \in \mathcal{F}_n$.

Proposition 15. Soit $(X_n)_{n\geq 0}$ un processus adapté, et T un temps d'arrêt. Alors la variable aléatoire $1_{T<+\infty}X_T$ définie par

$$1_{T<+\infty}X_T(\omega) = \begin{cases} X_n(\omega) & si\ T(\omega) = n \in \mathbb{N} \\ 0 & si\ T = +\infty \end{cases}$$

est \mathcal{F}_T -mesurable.

DÉMONSTRATION. Si les $(X_n)_{n\geq 0}$ sont à valeurs dans (E,\mathcal{B}) et si $B\in\mathcal{B}$, alors $\{X_T\in B\}\in\mathcal{F}_T$ si et seulement si pour tout entier $n\geq 0$, $\{X_T\in B\}\cap\{T=n\}\in\mathcal{F}_n$. Or on a $\{X_T\in B\}\cap\{T=n\}=\{X_n\in B\}\cap\{T=n\}$ qui est bien dans \mathcal{F}_n .

5. Propriétés des martingales par rapport aux temps d'arrêts

Soit $(X_n)_{n\geq 0}$ un processus adapté à une filtration $(\mathcal{F}_n)_{n\geq 0}$ et ν un temps d'arrêt adapté à la même filtration. On définit un nouveau processus, appelé processus arrêté et noté $X^{|\nu} = (X_{n\wedge\nu})_{n>0}$, en posant

$$X_{n \wedge \nu}(\omega) = \begin{cases} X_n(\omega) & \text{si } n < \nu(\omega) \\ X_{\nu(\omega)}(\omega) & \text{si } n \ge \nu(\omega) \end{cases}$$

Par conséquent on a

$$X_{n \wedge \nu}(\omega) = X_n(\omega) \mathbb{1}_{\{n < \nu(\omega)\}} + X_{\nu}(\omega) \mathbb{1}_{\{\nu(\omega) < n\}}$$

ce qui montre bien que ce processus est encore adapté à la filtration $(\mathcal{F}_n)_{n\geq 0}$. Un autre manière d'exprimer ce processus est la suivante

$$X_{n \wedge \nu} = X_0 1_{\{\nu=0\}} + X_1 1_{\{\nu=1\}} + \dots + X_n 1_{\{\nu=n\}} + X_n 1_{\{\nu>n\}}$$
$$= X_0 + \sum_{k=0}^{n-1} (X_{k+1} - X_k) 1_{\{\nu>k\}}.$$

Théorème 16.

Si $(X_n)_{n\geq 0}$ est une martingale et ν un temps d'arrêt par rapport à la filtration $(\mathcal{F}_n)_{n\geq 0}$ alors le processus arrêté, $(X_{n\wedge \nu})_{n\geq 0}$, est encore une martingale.

DÉMONSTRATION. Si $\{\nu \leq n\}$ alors $n \wedge \nu = (n+1) \wedge \nu$ et par conséquent $(X_{(n+1)\wedge \nu} - X_{n\wedge \nu}) 1_{\{\nu \leq n\}} = 0$. D'où, comme $\{\nu \geq n+1\} = \{\nu \leq n\}^c \in \mathcal{F}_n$, on a

$$\mathbb{E}[X_{(n+1)\wedge\nu} - X_{n\wedge\nu}|\mathcal{F}_n] = \mathbb{E}[(X_{(n+1)\wedge\nu} - X_{n\wedge\nu})1_{\{\nu \geq n+1\}}|\mathcal{F}_n] = 1_{\{\nu \geq n+1\}}\mathbb{E}[X_{n+1} - X_n|\mathcal{F}_n] = 0.$$

Donnons un résultat similaire pour les surmartingales et les sous-martingales.

Proposition 17. Si $(X_n)_{n\geq 0}$ est une surmartingale (resp. une sous-martingale) et si ν est un temps d'arrêt par rapport à la filtration $(\mathcal{F}_n)_{n\geq 0}$ alors le processus arrêté, $(X_{n\wedge\nu})_{n\geq 0}$, est encore une surmartingale (resp. une sous-martingale).

On souhaite maintenant étudier le comportement de la variable aléatoire X_{ν} , obtenue lorsqu'on remplace le temps linéaire n dans une martingale par un temps d'arrêt ν . On se placera dans le cas particulier ou ν est un temps d'arrêt borné.

La variable aléatoire X_{ν} est appelée variable aléatoire terminale du processus arrêté $(X_{n \wedge \nu})_{n \geq 0}$. Elle est définie si le temps d'arrêt est presque sûrement fini.

Proposition 18. Si ν est un temps d'arrêt presque sûrement fini, i.e. $\mathbb{P}(\nu < +\infty) = 1$ alors

$$X_{n \wedge \nu} \xrightarrow[n \to \infty]{p.s.} X_{\nu}$$

DÉMONSTRATION. Pour presque tout ω on a $\nu(\omega) < +\infty$. Soit alors un tel ω . Pour tout $n \geq \nu(\omega)$, $X_{n \wedge \nu}(\omega) = X_{n \wedge \nu(\omega)}(\omega) = X_{\nu(\omega)}$.

On peut remarquer que si $\nu(\omega) = +\infty$ alors $X_{n\wedge\nu}(\omega) = X_n(\omega)$. Si par exemple la suite $(X_n(\omega))$ est convergente alors, on pose $X_{\nu}(\omega) = \lim_{n\to+\infty} X_n(\omega)$. On peut donc prolonger la définition de la variable aléatoire X_{ν} sur $\{\nu = +\infty\}$ et donc pour tout ω on a $X_{\nu}(\omega) = \lim_{n\to+\infty} X_{n\wedge\nu}(\omega)(\omega)$.

Si $X_{n\wedge\nu}$ est une martingale, on a $\mathbb{E}[X_{n\wedge\nu}] = \mathbb{E}[X_0]$. Si de plus on a, comme dans la proposition précédente, $X_{n\wedge\nu} \xrightarrow[n\to\infty]{\text{p.s.}} X_{\nu}$, on a envie d'en déduire $\mathbb{E}[X_{\nu}] = \mathbb{E}[X_0]$. Les conditions sous lesquelles cette égalité est valide forment ce qu'on appelle des "théorèmes d'arrêt".

6. Théorèmes d'arrêt

Le théorème le plus simple est le suivant

Théorème 19.

Théorème d'arrêt borné. Soient $(X_n)_{n\geq 0}$ une martingale (resp. une surmartingale, resp. une sous-martingale) et ν un temps d'arrêt borné tous les deux adaptés à la filtration $(\mathcal{F}_n)_{n\geq 0}$. Alors on a

$$\mathbb{E}(X_{\nu}) = \mathbb{E}(X_0) \quad (resp. \ \mathbb{E}(X_{\nu}) \leq \mathbb{E}(X_0), \ resp. \ \mathbb{E}(X_{\nu}) \geq \mathbb{E}(X_0)).$$

DÉMONSTRATION. Comme ν est borné il existe un entier $M \geq 1$ tel que $0 \leq \nu \leq M$, d'où $X_{M \wedge \nu} = X_{\nu}$. Par conséquent, en utilisant le théorème 16 et la proposition 17 on obtient le résultat. \square

Un théorème d'arrêt n'est rien d'autre qu'un théorème d'interversion limite et intégrale. On a donc tout aussi facilement :

Théorème 20.

Soient $(X_n)_{n\geq 0}$ une martingale (resp. une surmartingale, resp. une sous-martingale) et ν un temps d'arrêt presque sûrement fini tous les deux adaptés à la filtration $(\mathcal{F}_n)_{n\geq 0}$. Alors s'il existe une variable aléatoire Y intégrable telle que $\forall n, |X_{\nu \wedge n}| \leq Y$, on a

$$\mathbb{E}(X_{\nu}) = \mathbb{E}(X_0) \quad (resp. \ \mathbb{E}(X_{\nu}) \leq \mathbb{E}(X_0), \ resp. \ \mathbb{E}(X_{\nu}) \geq \mathbb{E}(X_0)).$$

Ce théorème s'applique en particulier lorsque $X_{\nu \wedge n}$ est bornée.

DÉMONSTRATION. (dans le cas des martingales) : On sait que $\mathbb{E}[X_{n \wedge \nu}] = \mathbb{E}[X_0]$. Si de plus on a, comme dans la proposition précédente, $X_{n \wedge \nu} \xrightarrow[n \to \infty]{p.s.} X_{\nu}$ Il suffit ensuite d'appliquer le théorème de convergence dominée.

On peut faire un peu plus sophistiqué:

Théorème 21.

Théorème d'arrêt non borné Soient $(X_n)_{n\geq 0}$ une martingale (resp. une surmartingale, resp. une sous-martingale) et ν un temps d'arrêt presque sûrement fini tous les deux adaptés à la filtration $(\mathcal{F}_n)_{n\geq 0}$. On suppose que $\mathbb{E}[|X_{\nu}|] < \infty$ et que $\lim_{n\to\infty} \mathbb{E}[1_{\nu>n}X_n] = 0$. Alors on a

$$\mathbb{E}(X_{\nu}) = \mathbb{E}(X_0) \quad (resp. \ \mathbb{E}(X_{\nu}) \leq \mathbb{E}(X_0), \ resp. \ \mathbb{E}(X_{\nu}) \geq \mathbb{E}(X_0)).$$

DÉMONSTRATION. On a $X_{\nu} - X_{\nu \wedge n} = (X_{\nu} - X_{\nu \wedge n}) 1_{\nu \leq n} + (X_{\nu} - X_{\nu \wedge n}) 1_{\nu > n} = X_{\nu} 1_{\nu > n} - X_{n} 1_{\nu > n}$ En prenant l'espérance, on obtient $\mathbb{E}[X_{\nu}] - \mathbb{E}[X_{\nu \wedge n}] = \mathbb{E}[X_{\nu} 1_{\nu > n}] - \mathbb{E}[X_{n} 1_{\nu > n}]$

Le deuxième terme du membre de gauche tend vers 0 par hypothèse. Le premier également : en effet $\lim X_{\nu}1_{\nu>n}=0$ car ν est p.s. fini ; de plus $|X_{\nu}1_{\nu>n}|\leq |X_{\nu}|$ qui est intégrable. On peut donc utiliser le théorème de convergence dominée.

7. Inégalités maximales

Théorème 22.

Inégalité maximale de Doob

Soit $(X_n)_{n\geq 0}$ une sous-martingale positive. Alors, pour tout $\lambda > 0$, on a:

$$\mathbb{P}\left(\max_{0\leq k\leq n}X_k>\lambda\right)\leq \frac{\mathbb{E}(X_n)}{\lambda}$$

On a alors pour $\lambda > 0$

$$\mathbb{P}\left(\sup_{k\in\mathbb{N}}X_k > \lambda\right) \le \frac{1}{\lambda}\sup_{k\in\mathbb{N}}\mathbb{E}[|X_k|].$$

DÉMONSTRATION. Posons $M_n = \{\max_{0 \le k \le n} X_k > \lambda\} = \bigcup_{0 \le k \le n} \{X_k > \lambda\}$ et introduisons le temps d'arrêt ν tel que $\nu = \inf\{0 \le k \le n, \ X_k > \lambda\}$ sur M_n et $\nu = n$ sur M_n^c . C'est bien un temps d'arrêt, de plus il est borné par n. Par conséquent on a $X_{n \wedge \nu} = X_{\nu}$. Appliquons alors le théorème d'arrêt à la sous-martingale $(X_n)_{n \ge 0}$ et au temps d'arrêt borné $n \wedge \nu = \nu$. On a

$$\mathbb{E}(X_n) \geq \mathbb{E}(X_{n \wedge \nu}) = \mathbb{E}(X_{\nu}) = \mathbb{E}(X_{\nu} 1_{M_n}) + \mathbb{E}(X_{\nu} 1_{M_n^c}) = \mathbb{E}(X_{\nu} 1_{M_n}) + \mathbb{E}(X_n 1_{M_n^c})$$

$$\geq \mathbb{E}(X_{\nu} 1_{M_n}) \quad \text{car la sous-martingale est positive}$$

$$\geq \lambda \mathbb{E}(1_{M_n}) = \lambda \mathbb{P}(M_n)$$

d'où le résultat.

Corollaire 23. Soit $(X_n)_{n\geq 0}$ une martingale. Alors, pour tout $\lambda > 0$, on a :

$$\mathbb{P}\left(\max_{0 \le k \le n} |X_k| > \lambda\right) \le \frac{\mathbb{E}(|X_n|)}{\lambda}$$

DÉMONSTRATION. C'est une conséquence du résultat précédent et du fait que si $(X_n)_{n\geq 0}$ est une martingale alors $(|X_n|)_{n\geq 0}$ est une sous-martingale positive.

Corollaire 24. Soit $(X_n)_{n\geq 0}$ une martingale telle que pour tout $n\geq 0$ on ait $\mathbb{E}(X_n^2)<+\infty$. Alors, pour tout $\lambda>0$, on a:

$$\mathbb{P}\left(\max_{0 \leq k \leq n} |X_k| > \lambda\right) \leq \frac{\mathbb{E}(X_n^2)}{\lambda^2}$$

DÉMONSTRATION. Avec les hypothèses du corollaire, on sait que $(X_n^2)_{n\geq 0}$ est une sous-martingale positive. Ensuite il suffit d'appliquer la proposition ci-dessus.

Le corollaire ci-dessus généralise l'inégalité de Kolmogorov (voir la loi forte des grands nombres) : soit $(Y_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes identiquement distribuées d'espérance nulle et de variance σ^2 . On pose $Y_0=0$ et $S_n=Y_0+Y_1+\cdots+Y_n$; alors pour tout $\varepsilon>0$

$$\mathbb{P}\left(\sup_{0 \le k \le n} |S_k| > \varepsilon\right) \le \frac{\mathbb{E}(S_n^2)}{\varepsilon^2}$$

En effet, sous les hypothèses, $(S_n)_{n\geq 0}$ est une martingale telle que $\mathbb{E}(S_n^2) < +\infty$, on peut donc appliquer le corollaire.

Pour terminer ce paragraphe, nous donnons un résultat pour les surmartingales positives.

Théorème 25.

Soit $(X_n)_{n\geq 0}$ une surmartingale positive. Alors, pour tout $\lambda > 0$, on a:

$$\mathbb{P}\left(\max_{0 \le k \le n} X_k > \lambda\right) \le \frac{\mathbb{E}(X_0)}{\lambda}$$

DÉMONSTRATION. Poson $M_n = \{\max_{0 \le k \le n} X_k > \lambda\}$, et soit ν le temps d'arrêt défini par $\nu = \inf\{k: 0 \le k \le n, X_k > \lambda\}1_{M_n} + n1_{M_n^c}$. Si on applique le théorème d'arrêt à la surmartingale $(X_n)_{n \ge 0}$ pour le temps d'arrêt borné $\nu \wedge n$, on a par positivité,

$$\mathbb{E}[X_0] \ge \mathbb{E}[X_{n \wedge \nu}] = \mathbb{E}[X_{\nu} 1_{M_n}] + \mathbb{E}[X_n 1_{M_n^c}] \ge \mathbb{E}[X_{\nu} 1_{M_n}] \ge \lambda \mathbb{P}(M_n).$$

8. Convergence des martingales

Il est naturel de se poser la question suivante :

Si $(X_n)_{n\geq 0}$ est une martingale alors existe-t-il une variable aléatoire X telle que $\lim_{n\to +\infty} X_n = X$? Si c'est le cas, en quel sens a lieu cette convergence (presque sûre, en probabilité, en loi, dans L_1 ou L_2)? D'autre part a-t-on, alors $\mathbb{E}[X] = \mathbb{E}[X_0]$ ou encore $\mathbb{E}[X|\mathcal{F}_n] = X_n$?

Nous allons essayer de répondre à ces questions.

Théorème 26.

Soit $(X_n)_{n\geq 0}$ une martingale bornée dans L^1 , i.e. $\sup_{n\geq 0} \mathbb{E}(|X_n|) < +\infty$. Alors $(X_n)_{n\geq 0}$ converge presque sûrement vers une variable aléatoire X_∞ intégrable.

Pour démontrer le résultat ci-dessus nous allons utiliser un lemme qui donne une majoration du nombre de traversées d'une bande horizontale par la suite $(X_n)_{n\geq 0}$. Pour cela on se donne deux nombres a et b tels que a < b et on définit une double suite de temps d'arrêt $S_1 < T_1 < S_2 < T_2 < \dots$ par

$$S_1 = \inf_{n \ge 0} \{ X_n \le a \},$$
 $T_1 = \inf_{n > S_1} \{ X_n \ge b \}$
 $S_2 = \inf_{n > T_1} \{ X_n \le a \},$ $T_2 = \inf_{n > S_2} \{ X_n \ge b \}$

et ainsi de suite, avec la convention que si l'une des bornes inférieures n'existe pas on donne la valeur infini. On note

$$M_{a,b} = \sum_{k>1} 1_{\{T_k < +\infty\}}$$

qui représente le nombre total de traversées de [a,b], en montant effectuées par la trajectoire $n\mapsto X_n$.

Lemme 27. Inégalité de Dubins

Pour tout $k \ge 1$ et tout $n \ge 1$, on a :

$$(b-a)\mathbb{P}(T_k < n) \le \mathbb{E}[(a-X_n)1_{\{S_k \le n < T_k\}}]$$

DÉMONSTRATION. L'entier n étant fixé, posons

$$D_k = X_{T_k \wedge n} - X_{S_k \wedge n}$$

En appliquant le théorème d'arrêt aux temps d'arrêts bornés $T_k \wedge n$ et $S_k \wedge n$ on remarque que

$$\mathbb{E}[D_k] = \mathbb{E}[X_1] - \mathbb{E}[X_1] = 0.$$

D'autre part, par définition des S_k et T_k on a

$$\{n < S_k\} \subset \{D_k = 0\}$$
 et $\{T_k \le n\} \subset \{D_k \ge b - a\};$
 $\{S_k \le n < T_k\} \subset \{D_k = X_n - X_{S_k}\} \subset \{D_k \ge X_n - a\};$

et par conséquent

$$(b-a)1_{\{T_k < n\}} + (X_n - a)1_{\{S_k < n < T_k\}} \le D_k$$

et en prenant l'espérance mathématique :

$$(b-a)\mathbb{P}(T_k \le n) + \mathbb{E}[(X_n - a)1_{\{S_k < n < T_k\}}] \le \mathbb{E}[D_k] = 0$$

Lemme 28. Lemme de Doob

Avec les mêmes notations on a :

$$\mathbb{E}[M_{a,b}] \le \frac{|a|}{b-a} + \frac{1}{b-a} \sup_{n>0} \mathbb{E}(|X_n|)$$

DÉMONSTRATION. D'après le lemme précédent on a

$$(b-a)\sum_{k\geq 1} \mathbb{P}(T_k \leq n) \leq \sum_{k\geq 1} \mathbb{E}[(a-X_n)1_{\{S_k \leq n < T_k\}}].$$

Or les événements $\{S_k \leq n < T_k\}$ pour $k \geq 1$ sont disjoints. On note A leur réunion. Comme $\{S_k \leq n < T_k\} = \emptyset$ si $k \geq n$, on a

$$\sum_{k\geq 1} \mathbb{E}[(a-X_n)1_{\{S_k\leq n < T_k\}}] = \sum_{1\leq k\leq n} \mathbb{E}[(a-X_n)1_{\{S_k\leq n < T_k\}}] = \mathbb{E}\left[(a-X_n)\sum_{1\leq k\leq n} 1_{\{S_k\leq n < T_k\}}\right]$$

$$= \mathbb{E}\left[(a-X_n)\sum_{k\geq 1} 1_{\{S_k\leq n < T_k\}}\right] = \mathbb{E}[(a-X_n)1_A]$$

$$(b-a)\sum_{k>1} \mathbb{P}(T_k \le n) \le \mathbb{E}[(a-X_n)1_A]$$

Maintenant, on a les majorations : $\mathbb{E}[(a-X_n)1_A] \leq \mathbb{E}[(a-X_n)^+1_A] \leq \mathbb{E}[(a-X_n)^+] \leq |a| + \sup_{n \geq 0} \mathbb{E}(|X_n|)$; d'où la majoration pour tout n

$$\Sigma_n = \sum_{k>1} \mathbb{P}(T_k \le n) \le \frac{|a| + \sup_{n \ge 0} \mathbb{E}(|X_n|)}{b - a} = \alpha.$$

La suite $(\Sigma_n)_{n\geq 0}$ étant croissante, on en déduit qu'elle est convergente. D'où, comme $\mathbb{P}(T_k<+\infty)=\lim_{n\to+\infty}\mathbb{P}(T_k< n)$, on obtient

$$\mathbb{E}[M_{a,b}] = \sum_{k>1} \mathbb{P}(T_k < +\infty) \le \alpha.$$

Ceci nous permet de terminer la preuve de la convergence presque sûre des martingales L^1 .

Lemme 29. La suite $(X_n)_{n\geq 0}$ est presque sûrement convergente

DÉMONSTRATION. La variable aléatoire $M_{a,b}$ est positive et intégrable. Elle est donc presque sûrement finie, ou encore $\mathbb{P}(M_{a,b}=+\infty)=0$. La réunion dénombrable

$$\bigcup_{a,b\in\mathbb{Q},a< b} \{M_{a,b} = +\infty\}$$

est donc aussi négligeable.

L'événement { $\liminf_{n \to +\infty} X_n < a < b < \limsup_{n \to +\infty} X_n$ } entraı̂ne qu'il y a une infinité d'indices n tels que $\{X_n < a\}$ se réalise et une infinité d'indices n tels que $\{X_n > b\}$ se réalise, et donc $\{M_{a,b} = +\infty\}$. On a donc

$$\{\liminf_{n \to +\infty} X_n < a < b < \limsup_{n \to +\infty} X_n\} \subset \{M_{a,b} = +\infty\}$$

d'où

$$\{ \liminf_{n \to +\infty} X_n < \limsup_{n \to +\infty} X_n \} = \cup_{a,b \in \mathbb{Q}, a < b} \{ \liminf_{n \to +\infty} X_n < a < b < \limsup_{n \to +\infty} X_n \} \subset \cup_{a,b \in \mathbb{Q}, a < b} \{ M_{a,b} = +\infty \}$$

et donc

$$\mathbb{P}(\liminf_{n \to +\infty} X_n < \limsup_{n \to +\infty} X_n) = 0$$

par conséquent on obtient le résultat.

Pour terminer la démonstration du théorème, il reste à montrer que la limite presque sûre des X_n est une variable aléatoire intégrable. On a $|X_n| \to |X_\infty|$ presque sûrement et pour tout $n \ge 0$, $\mathbb{E}[|X_n|] \le \sup_{n>0} \mathbb{E}(|X_n|) < +\infty$, d' où par le lemme de Fatou on a

$$\mathbb{E}[|X_{\infty}|] = \mathbb{E}[\lim_{n \to +\infty} |X_n|] = \mathbb{E}[\liminf_{n \to +\infty} |X_n|] \leq \liminf_{n \to +\infty} \mathbb{E}[|X_n|] \leq \sup_{n > 0} \mathbb{E}(|X_n|) < +\infty.$$

Corollaire 30. Le théorème est encore vrai si on prend une surmartingale ou une sous-martingale.

DÉMONSTRATION. Si $(X_n)_{n\geq 0}$ est une surmartingale, on a $\mathbb{E}[D_n] \leq 0$, car une surmartingale est décroissante; ensuite les inégalités restent toutes dans le même sens.

Si on part maintenant d'une sous-martingale $(X_n)_{n\geq 0}$, alors $(-X_n)_{n\geq 0}$ est une surmartingale. A toute traversée en montant de [a,b] correspond une traversée en descendant de [-b,-a]. Donc le théorème appliqué pour les surmartingales entraı̂ne le résultat pour les sous-martingales.

Corollaire 31. Une martingale de signe constant (resp. une surmartingale positive, resp. une sousmartingale négative) est presque sûrement convergente.

DÉMONSTRATION. Si $(X_n)_{n\geq 0}$ est une martingale positive, alors on a pour tout $n\geq 0$ les relations $\mathbb{E}[|X_n|]=\mathbb{E}[X_n]=\mathbb{E}[X_0]<+\infty$ et le théorème s'applique (on procède de même si on a une martingale négative). Pour une surmartingale positive, on a $\mathbb{E}[|X_n|]=\mathbb{E}[X_n]\leq \mathbb{E}[X_0]<+\infty$. Et enfin pour une sous-martingale négative $\mathbb{E}[|X_n|]=-\mathbb{E}[X_n]\leq -\mathbb{E}[X_0]<+\infty$.

9. Convergence des martingales L^2

Remarquons tout d'abord que si $(X_n)_{n\geq 0}$ est une martingale telle que pour $n\geq 0$, $\mathbb{E}(X_n^2)<+\infty$, alors pour tout $n\geq 0$, et tout $p\geq 1$ on a

$$\mathbb{E}[(X_{n+p} - X_n)^2] = \mathbb{E}[X_{n+p}^2] - \mathbb{E}[X_n^2]$$

Ce n'est rien d'autre que la formule de Pythagore appliquée à X_n qui est la projection orthogonale de X_{n+p} sur \mathcal{F}_n .

Théorème 32.

Soit $(X_n)_{n\geq 0}$ une martingale bornée dans L^2 , i.e. $\sup_{n\geq 0} \mathbb{E}(X_n^2) < +\infty$. Alors $(X_n)_{n\geq 0}$ converge dans L^2 et presque sûrement vers une variable aléatoire X_∞ telle que $X_n = \mathbb{E}[X_\infty | \mathcal{F}_n]$.

En particulier $\mathbb{E}[X_{\infty}] = \mathbb{E}[X_0]$.

DÉMONSTRATION. On pose $m = \sup_{n\geq 0} \mathbb{E}(X_n^2) < +\infty$. Comme $(X_n)_{n\geq 0}$ est une martingale, on sait que $(X_n^2)_{n\geq 0}$ est une sous-martingale et par conséquent $(\mathbb{E}(X_n^2))_{n\geq 0}$ est une suite réelle croissante. Cette suite est majorée par m, elle est donc convergente. Comme

$$\mathbb{E}[(X_{n+p} - X_n)^2] = \mathbb{E}[X_{n+p}^2] - \mathbb{E}[X_n^2]$$

on en déduit alors que la suite $(X_n)_{n\geq 0}$ est de Cauchy dans L^2 , et donc qu'elle converge dans L^2 , L^2 étant complet.

Montrons maintenant qu'on a convergence presque sûre. On vérifie facilement que pour $m \geq 1$ fixé, $((X_{m+k} - X_m)^2)_{k \geq 0}$ est une sous-martingale positive, donc d'après l'inégalité maximale de Doob, on a pour tout a > 0

$$\mathbb{P}\left(\max_{0 \le k \le n} |X_{m+k} - X_m| > a\right) = \mathbb{P}\left(\max_{0 \le k \le n} (X_{m+k} - X_m)^2 > a^2\right) \\
\le \frac{\mathbb{E}[(X_{m+n} - X_m)^2]}{a^2} \le \frac{\sup_{j \ge 0} \mathbb{E}[(X_{m+j} - X_m)^2]}{a^2}$$

Or $(\{\max_{0 \le k \le n} |X_{m+k} - X_m| > a\})_{n \ge 0}$ est une suite croissante d'événements dont la réunion est égale à $\{\sup_{k \ge 0} |X_{m+k} - X_m| > a\}$; d'où

$$\mathbb{P}\left(\sup_{k>0}|X_{m+k}-X_m|>a\right) = \lim_{n\to+\infty}\mathbb{P}\left(\max_{0\leq k\leq n}|X_{m+k}-X_m|>a\right) \leq \frac{\sup_{j\geq 0}\mathbb{E}[(X_{m+j}-X_m)^2]}{a^2}$$

Par conséquent, $\lim_{m\to+\infty} \mathbb{P}(\sup_{k\geq 0} |X_{m+k}-X_m|>a)=0$ pour tout a>0 et donc en particulier si a=1/l pour $l\in\mathbb{N}^*$. Alors, si on pose $A_{m,l}=\{\sup_{k\geq 0} |X_{m+k}-X_m|>1/l\}$, comme pour tout $m\geq 1$, $\mathbb{P}(\cap_{m\geq 1}A_{m,l})\leq \mathbb{P}(A_{m,l})$, on a

$$\mathbb{P}(\cap_{m\geq 1}A_{m,l})=0\quad \text{ et donc }\quad \mathbb{P}(\cup_{l\geq 1}\cap_{m\geq 1}A_{m,l})=0$$

Si $\omega \notin \bigcup_{l>1} \cap_{m>1} A_{m,l}$, alors pour tout $l \geq 1$, il existe $m \geq 1$ tel que pour tout $k \geq 1$

$$|X_{m+k}(\omega) - X_m(\omega)| < 1/l.$$

Ceci implique que la suite $(X_n(\omega))_{n\geq 0}$ est de Cauchy dans \mathbb{R} et donc est convergente. On en déduit que $(X_n)_{n>0}$ est presque sûrement convergente.

Pour le dernier point remarquons que pour tout $A \in \mathcal{F}_n$ on a

$$\mathbb{E}[1_{A}X_{n}] - \mathbb{E}[1_{A}\mathbb{E}[X_{\infty}|\mathcal{F}_{n}]] = \mathbb{E}[1_{A}\mathbb{E}[X_{n+k}|\mathcal{F}_{n}] - 1_{A}\mathbb{E}[X_{\infty}|\mathcal{F}_{n}]] = \mathbb{E}[\mathbb{E}[1_{A}(X_{n+k} - X_{\infty})|\mathcal{F}_{n}]]$$

$$\leq \mathbb{E}[1_{A}|X_{n+k} - X_{\infty}|] \leq \mathbb{E}[|X_{n+k} - X_{\infty}|] \leq \sqrt{\mathbb{E}[|X_{n+k} - X_{\infty}|^{2}]}$$

ce dernier terme tend vers 0 lorsque k tend vers l'infini. D'où on obtient que $X_n = \mathbb{E}[X_\infty | \mathcal{F}_n]$.

10. Convergence dans L^1

Théorème 33.

Soit $(X_n)_{n\geq 0}$ une martingale. Les deux conditions suivantes sont équivalentes.

- (i) La suite X_n converge vers X_{∞} p.s. et dans L^1 .
- (ii) Il existe une variable aléatoire Y intégrable telle que $X_n = \mathbb{E}[Y|\mathcal{F}_n]$ pour tout $n \in \mathbb{N}$. De plus, si ces conditions sont satisfaites, on peut prendre $Z = X_{\infty}$ dans (ii). On dit alors que la martingale est fermée.

DÉMONSTRATION. Supposons d'abord (i). On a pour $m \geq n$, $X_n = \mathbb{E}[X_m | \mathcal{F}_n]$. D'autre part, $X \mapsto \mathbb{E}[X | \mathcal{F}_n]$ est une contraction de L^1 , i.e. $\mathbb{E}[|\mathbb{E}[X | \mathcal{F}_n]|] \leq \mathbb{E}[|X|]$. On en déduit que

$$X_n = \lim_{m \to +\infty} \mathbb{E}[X_m | \mathcal{F}_n] = \mathbb{E}[X_\infty | \mathcal{F}_n].$$

Pour la réciproque on a une martingale $(X_n)_{n\in\mathbb{N}}$ bornée dans L^1 et donc on sait qu'elle converge presque sûrement. Pour la convergence L^1 supposons d'abord que Y est bornée par une constante $K < \infty$. Il en est donc de même pour les variables aléatoires X_n , et le théorème de convergence dominée donne alors le résultat voulu.

Dans le cas général soit $\varepsilon > 0$, fixons M assez grand pour que

$$\mathbb{E}[|Y - Y1_{|Y| < M}|] < \varepsilon.$$

Alors, pour tout n,

$$\mathbb{E}[|X_n - \mathbb{E}[Y1_{|Y| < M} | \mathcal{F}_n]|] \le \mathbb{E}[|\mathbb{E}[Y - Y1_{|Y| < M} | \mathcal{F}_n]|] < \varepsilon.$$

D'après le cas borné, la martingale $\mathbb{E}[Y1_{|Y|\leq M}|\mathcal{F}_n]$ converge dans L^1 . Donc on peut choisir n_0 assez grand pour que, pour tous $m, n \geq n_0$,

$$\mathbb{E}[|\mathbb{E}[Y1_{|Y| \leq M}|\mathcal{F}_m]| - \mathbb{E}[Y1_{|Y| \leq M}|\mathcal{F}_n]|] \leq \varepsilon.$$

En combinant les majorations on obtient pour, $m, n \geq n_0$,

$$\mathbb{E}[|X_m - X_n|] < 3\varepsilon$$

ce qui entraı̂ne que la martingale (X_n) est de Cauchy dans L^1 et donc le résultat.

Corollaire 34. Soit Y une variable aléatoire intégrable sur un espace filtré $(\Omega, \mathcal{A}, \mathcal{F}, \mathbb{P})$. Alors la martingale définie par $X_n = \mathbb{E}[Y|\mathcal{F}_n]$ converge presque sûrement et dans L^1 vers $X_\infty = \mathbb{E}[Y|\mathcal{F}_\infty]$ où $\mathcal{F}_\infty = \sigma(\cup_{n\geq 1}\mathcal{F}_n)$.

DÉMONSTRATION. D'après le théorème précédent, il reste à montrer que $X_{\infty} = \mathbb{E}[Y|\mathcal{F}_{\infty}]$. Remarquons d'abord que X_{∞} est \mathcal{F}_{∞} -mesurable car les X_n le sont. Ensuite pour tout $n \in \mathbb{N}$ et $A \in \mathcal{F}_n$ on a :

$$\begin{split} \mathbb{E}[Y1_A] &= \mathbb{E}[\mathbb{E}[Y1_A|\mathcal{F}_n]] = \mathbb{E}[\mathbb{E}[Y|\mathcal{F}_n]1_A] \\ &= \mathbb{E}[X_n1_A] = \mathbb{E}[\mathbb{E}[X_\infty|\mathcal{F}_n]1_A] = \mathbb{E}[\mathbb{E}[X_\infty1_A|\mathcal{F}_n]] \\ &= \mathbb{E}[X_\infty1_A]. \end{split}$$

Comme le résultat est vrai pour tout $A \in \sigma(\bigcup_{n \geq 1} \mathcal{F}_n)$ on en déduit qu'il est encore vrai pour tout $A \in \mathcal{F}_{\infty}$ (argument de classes monotones). D'où on obtient le corollaire.

Pour aller un peu plus loin nous avons besoin de parler de variables uniformément intégrables.

Définition 35. La famille $(X_i)_{i\in I}$ est uniformément intégrable (on parle aussi d'équi-intégrabilité) si

$$\lim_{a \to +\infty} \sup_{i \in I} \mathbb{E}[|X_i| 1_{\{|X_i| > a\}}] = 0$$

Remarquons qu'une famille uniformément intégrable est bornée dans L^1 . En effet on peut choisir a assez grand pour que

$$\sup_{i \in I} \mathbb{E}[|X_i| 1_{\{|X_n| > a\}}] \le 1$$

et écrire ensuite

$$\mathbb{E}[|X_i|] \le \mathbb{E}[|X_i|1_{\{|X_n| \le a\}}] + \mathbb{E}[|X_i|1_{\{|X_n| > a\}}] \le a + 1.$$

Attention la réciproque est fausse.

En utilisant le théorème de convergence dominée, on montre qu'une famille réduite à un singleton et plus généralement une famille finie est uniformément intégrable.

Rappelons le résultat suivant, liant la convergence en probabilité et la convergence L^1 .

Proposition 36. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires intégrables qui converge en probabilité vers X. Alors il y a équivalence entre

- (i) La suite $(X_n)_{n\in\mathbb{N}}$ converge vers X dans L^1 .
- (ii) La suite $(X_n)_{n\in\mathbb{N}}$ est uniformément intégrable.

Cette proposition nous donne une hypothèse sous laquelle la converge en probabilité entraı̂ne la convergence L^1 .

Appliquons ceci aux martingales.

Théorème 37.

Soit $(X_n)_{n\geq 0}$ une martingale. Les trois conditions suivantes sont équivalentes.

- (i) La suite X_n converge vers X_{∞} p.s. et dans L^1 .
- (ii) Il existe une variable aléatoire Y intégrable telle que $X_n = \mathbb{E}[Y|\mathcal{F}_n]$ pour tout $n \in \mathbb{N}$.
- (iii) La suite $(X_n)_{n\in\mathbb{N}}$ est uniformément intégrable.

Rappelons qu'alors on a $X_n = \mathbb{E}[X_\infty | \mathcal{F}_n]$ et donc aussi $\mathbb{E}[X_\infty] = \mathbb{E}[X_0]$.

Le résultat reste vrai pour les surmartingales et les sous-martingales.