المركز الجامعي عبد الحفيظ بوالصوف -ميلة

معهد العلوم و التكنولوجيا المقياس: بنية المادة

السنة الأولى ST

السلسلة رقم 2

التمرين 1:

ـ ما هو عدد الإلكترونات ، عدد البروتونات وعدد النيوترونات في كل من الذرات و الأيونات التالية:

$$^{27}_{13}Al^{3+}$$
 , $^{35}_{17}Cl^{-}$, $^{16}_{8}O^{2-}$, $^{24}_{12}Mg^{2+}$, $^{238}_{92}U$, $^{20}_{10}Ne$

التمرين 2:

1- ندخل حزمة من الإلكترونات ذات طاقة حركية $E_c = 4.\,10^{-14}J$ بين صفيحتي مكثفة حيث يخيم مجال كهربائي شدته E_c عبارة معادلة المسار للإلكترون داخل المكثفة y = f(x) بدلالة y = f(x)

2- إذا كان طول صفيحة المكثفة $L=50\ cm$ و المسافة الفاصلة بين الصفيحتين $d=20\ cm$ و كان مقدار الانحراف عند الخروج من المكثفة هو $y_0=2\ mm$ ، أحسب:

- فرق الجهد U المطبق بين الصفيحتين
- زاوية الانحراف lpha التي يصنعها المماس الذي ينشأ من منتصف المكثفة
- مقدار الانحراف Y_0 على الشاشة التي تبعد عن منتصف المكثفة بـ Y_0

<u>التمرين 3:</u>

أـ السقوط الحر لقطيرة زيت ذات نصف قطر $r=10^{-6}~\mathrm{m}$ بين لبوسي المكثفة يستغرق دقيقتين و 24 ثانية حيث المسافة بين اللبوسين $d=16~\mathrm{mm}$.

- 1- أحسب السرعة الحدية لسقوط القطيرة بطريقتين.
 - 2- أحسب كتلة القطيرة m.

ب ـ تشحن القطيرة بواسطة أشعة x فتحمل شحنة q ، عند تطبيق فرق جهد U_1 بين اللبوسين ، القطيرة تصعد نحو الأعلى ، إذا كانت القطيرة تصعد بين اللبوسين في زمن يساوي 11,8 :

- 1- أوجد قيمة الشحنة q المحمولة من طرف القطيرة
 - e الشحنة العنصرية للـ q

ج ـ عند أي فرق في الكمون U_2 تكون القطيرة ذات الشحنة q ساكنة. دافعة أر خميدس غير مهملة.

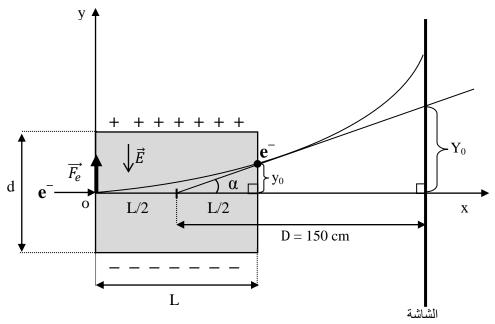
يعطى:

 $g = 9.81 \text{m.s}^{-2}$, $\rho_{air} = 1.21 \text{Kg/m}^3$, $\rho_h = 920 \text{Kg/m}^3$, $\eta = 1.8.10^{-5} \text{Kg.m}^{-1}$. s^{-1} , $u_1 = 10^4 \text{ volts}$

التمرين 4:

- أ- يتكون البور الطبيعي $_{5B}$ من النظيرين 10 و 11 بالنسب 11 و 11 على التوالى:
- 1- أعطى لكل نظير: الرقم الذري ، العدد الكتلى ، عدد البروتونات ، عدد النيترونات و عدد الإلكترونات.
 - 2- أحسب النسب المئوية X و Y للنظيرين علما أن الكتلة الذرية المتوسطة لعنصر البور هي: 10 B = 11,00931 uma ، 10 B = 10,01294 uma . يعطى : 10,811402 uma
- ب ـ يتشكل في غرفة التأين لمطياف Bainbridge الشوارد ${}^{10}B^{2+}$ و ${}^{11}B^{2+}$ كم يجب أن تكون سرعة هذه الأيونات بعد الخروج من مرشح السرعات إذا ما أردنا الفصل بين نقطتي اصطدامها على اللوح الفوتوغرافي بمسافة قدر ها d=2cm و هذا بعد مرورها في المحلل على مجال الحقل المغناطيسي : $B_0=0.5$ tesla
- ج إذا افترضنا أنه تتشكل في غرفة التأين أيونات أخرى B^+ ، ماهي عدد نقاط الاصطدام على الكاشف. مثل هذه النقاط بالترتيب على اللوح الفوتو غرافي.

حلول السلسلة رقم 2


حل التمرين 1:

النيوترونات (n)	البروتونات (P)	الإلكترونات (e)	الشحنة الكهربائية	الذرة أو الأيون
10	10	10	0	²⁰ ₁₀ Ne
146	92	92	0	²³⁸ U
12	12	10	2+	$^{24}_{12}Mg^{2+}$
8	8	10	2-	¹⁶ ₈ 0 ²⁻
18	17	18	1-	³⁵ ₁₇ Cl ⁻
14	13	10	3+	$^{27}_{13}Al^{3+}$

حل التمرين 2:

1- كتابة عبارة معادلة المسار y=f(x) للإلكترون داخل المكثفة : y=f(x) المكثفة و بساد الحالة (f(x)

لتحديد العبارة y=f(x) نقوم برسم مسار الإلكترون داخل المكثفة و نسقطه على معلم (xoy) كما هو موضح في الشكل التالي:

الإلكترونات في المكثفة تخضع للحقل الكهربائي وحده و بالتالي للقوة الكهربائية $\overrightarrow{F_e}$ المنطلقة من المبدأ حيث: y = f(x) ، و لإستخراج عبارة المسار y = f(x) للإلكترون نقوم بإسقاط هاته القوة مرة على المحور y = f(x) و مرة على المحور y = f(x) :

 \overrightarrow{ox} . بالإسقاط على المحور (\overrightarrow{ox}) :

القوة المطبقة على الإلكترونات في إتجاه المحور OX تساوي الصفر أي:

$$\overrightarrow{F_{e_x}} = m_e \ \overrightarrow{\gamma_x} = \overrightarrow{0} \ \Rightarrow m_e \gamma_x = 0 \ \Rightarrow \gamma_x = 0$$

$$\Rightarrow \gamma_x = \frac{d^2x}{dt^2} = 0 \ \Rightarrow \frac{dx}{dt} = v \ \Rightarrow \ x = v \ t \ \Rightarrow t = \frac{x}{v} \ (1)$$

$$\vdots \ (\overrightarrow{oy}) \ \$$

القوة الكهربائية المطبقة على المحور ٥٧ لا تساوى الصفر أي:

$$\overrightarrow{F_{e_y}} = m_e \overrightarrow{\gamma_y} = e \overrightarrow{E} \implies \gamma_y = \frac{e E}{m_e}$$

$$\Rightarrow \gamma_y = \frac{d^2 y}{dt^2} = \frac{e E}{m_e} \implies \frac{dy}{dt} = \frac{e E}{m_e} t \implies y = \frac{1}{2} \frac{e E}{m_e} t^2 \dots (2)$$

$$\Rightarrow \gamma_y = \frac{d^2 y}{dt^2} = \frac{e E}{m_e} \implies \frac{dy}{dt} = \frac{e E}{m_e} t \implies y = \frac{1}{2} \frac{e E}{m_e} t^2 \dots (2)$$

$$\Rightarrow \gamma_y = \frac{d^2 y}{dt^2} = \frac{e E}{m_e} \implies \frac{dy}{dt} = \frac{e E}{m_e} t \implies y = \frac{1}{2} \frac{e E}{m_e} t^2 \dots (2)$$

$$\Rightarrow \gamma_y = \frac{d^2 y}{dt^2} = \frac{e E}{m_e} \implies \frac{dy}{dt} = \frac{e E}{m_e} t \implies y = \frac{1}{2} \frac{e E}{m_e} t^2 \dots (2)$$

$$\Rightarrow \gamma_y = \frac{d^2 y}{dt^2} = \frac{e E}{m_e} \implies \frac{dy}{dt} = \frac{e E}{m_e} t \implies y = \frac{1}{2} \frac{e E}{m_e} t^2 \dots (2)$$

$$\Rightarrow \gamma_y = \frac{1}{2} \frac{e E}{m_e} t \implies y = \frac{1}{2} \frac{e E}{m_e} t \implies y = \frac{1}{2} \frac{e E}{m_e} t^2 \dots (2)$$

$$\Rightarrow \gamma_y = \frac{1}{2} \frac{e E}{m_e} t \implies y = \frac{1}{2} \frac{e E}{m_e} t \implies y$$

$$y = \frac{1}{2} \frac{e E}{m_e v^2} x^2 \dots (3)$$

و هي العبارة العامة لمسار الإلكترون داخل المكثفة.

 $E_c = (1/2) \; mv^2 \Rightarrow mv^2 = 2 \; E_c$: لدينا E_c ، E ، e ، E ، e المسار المسار قي العبارة العامة للمسار (3) نجد :

$$y = \frac{e E}{4 E_c} x^2 \dots (4)$$

 $_{2}$ و الجهد $_{3}$ و زاوية الإنحراف $_{3}$ و مقدار الإنحراف على الشاشة $_{3}$ 2 -

و $y=y_0$ و x=L المطبق بين الصفيحتين: في نقطة خروج الإلكترون من المكثفة يكون: x=L و $y=y_0$ و لدينا : $y=y_0$ و بالتعويض في العبارة (4) نجد :

$$y_0 = \frac{e U}{4 E_c d} L^2 \implies U = \frac{4 E_c d y_0}{e L^2} = \frac{4 \times 4 \times 10^{-14} \times 2 \times 10^{-3} \times 0.2}{1.6 \times 10^{-19} \times (0.5)^2}$$

$$U = 1600 V$$

راوية الإنحراف α التي يصنعها المماس الذي ينشأ من منتصف المكثفة:

$$tg \ \alpha = \frac{y_0}{L/2} = \frac{2 \ y_0}{L} = \frac{2 \times 2 \times 10^{-3}}{0.5} = 8 \times 10^{-3} \ \Rightarrow \ \alpha = 0.458^{\circ}$$

 $_{-}$ مقدار الإنحراف على الشاشة $_{0}Y_{0}$ التي تبعد عن منتصف المكثفة بـ $_{150\ cm}$

$$tg \ \alpha = \frac{Y_0}{D} = 8 \times 10^{-3} \ \Rightarrow \ Y_0 = tg\alpha \times D = 8 \times 10^{-3} \times 1.5$$

 $Y_0 = 12 \times 10^{-3} \ m = 1.2 \ cm$

حل التمرين 3:

أ. القطيرة في حالة سقوط حر (في عدم وجود حقل كهربائي):

1- حساب السرعة الحدية للقطيرة بطريقتين:

الطريقة $\frac{1}{2}$ حساب السرعة من خلال المسافة $\frac{1}{2}$ المسافة $\frac{1}{2}$ بين البوسين المقطوعة في زمن 144 ثانية:

$$v_1 = \frac{d}{t_1} = \frac{16 \times 10^{-3}}{144} = 0.111 \times 10^{-3} \text{ m/s}$$

الطريقة $\frac{1}{2}$ حساب السرعة من خلال القوى المطبقة على القطيرة التي تخضع في هذه الحالة لثلاثة قوى ، قوة الثقل \overrightarrow{P} و قوة دافعة إرخميدس $\overrightarrow{F_A}$ و قوة ستوكس $\overrightarrow{F_S}$ حيث يمكن كتابة:

$$\overrightarrow{F_S} + \overrightarrow{F_A} + \overrightarrow{P} = \overrightarrow{0}$$

$$\overrightarrow{F_S}$$

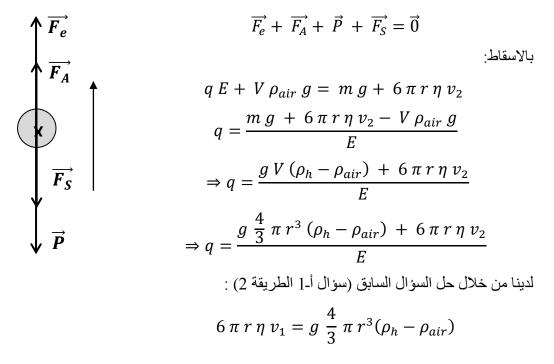
$$6\pi r \eta v_1 + V \rho_{air} g = m g$$

$$6\pi r \eta v_1 = m g - V \rho_{air} g$$

$$6\pi r \eta v_1 = V \rho_h g - V \rho_{air} g = g V (\rho_h - \rho_{air})$$

$$\Rightarrow 6\pi r \eta v_1 = g \frac{4}{3}\pi r^3 (\rho_h - \rho_{air})$$

$$\Rightarrow v_1 = \frac{g \frac{4}{3}\pi r^3 (\rho_h - \rho_{air})}{6\pi r \eta}$$


$$\Rightarrow v_1 = \frac{2 g r^2 (\rho_h - \rho_{air})}{9 \eta} = \frac{2 \times 9.81 \times (10^{-6})^2 \times (920 - 1.21)}{9 \times 1.8 \times 10^{-5}}$$
$$\Rightarrow v_1 = 0.111 \times 10^{-3} \text{ m/s}$$

2- حساب كتلة القطيرة:

$$m = V \rho_h = \frac{4}{3} \pi r^3 \rho_h = \frac{4}{3} \times 3.14 (10^{-6})^3 920 = 3.85 \times 10^{-15} Kg$$

ب - القطيرة في حالة صعود نحو الأعلى (في وجود حقل كهربائي):

1- إيجاد قيمة الشحنة q المحمولة من طرف القطيرة: في هاته الحالة القطيرة تخضع أربعة قوى و هي : قوة الثقل \overrightarrow{P} و قوة دافعة إرخميدس $\overrightarrow{F_A}$ و القوة الكهربائية $\overrightarrow{F_e}$ و قوة ستوكس $\overrightarrow{F_S}$ حيث يمكن كتابة:

بالتعويض في العبارة الأخيرة نجد:

$$\Rightarrow q = \frac{6 \,\pi \,r \,\eta \,v_1 + \,6 \,\pi \,r \,\eta \,v_2}{E} \ \, \Rightarrow q = \frac{6 \,\pi \,r \,\eta \,(v_1 + v_2)}{E}$$

 $: v_2 \circ E$ - Luna -

$$E = \frac{U_1}{d} = \frac{10^4}{16 \times 10^{-3}} = 625 \times 10^3 \, V/m$$
$$v_2 = \frac{d}{t_2} = \frac{16 \times 10^{-3}}{11.8} = 1.356 \times 10^{-3} \, m/s$$

بالتعويض في العبارة الأخيرة:

$$q = \frac{6 \times 3,14 \times 10^{-6} \times 1,8 \times 10^{-5} (0,111 \times 10^{-3} + 1,356 \times 10^{-3})}{625 \times 10^{3}}$$

$$q = 7,964 \times 10^{-19} C$$

مقارنة الشحنة المحمولة على القطيرة بالشحنة العنصرية للإلكترون:

$$\frac{q}{|e|} = \frac{7,964 \times 10^{-19}}{1,6 \times 10^{-19}} \approx 5 \Rightarrow q = 5 |e|$$

ج ـ حساب فرق الكمون U_2 الذي يجعل القطيرة ذات الشحنة q ساكنة (دافعة أرخميدس غير مهملة) :

: حيث ج $\overrightarrow{F_e}$ و $\overrightarrow{F_A}$ و \overrightarrow{P} و هي القطيرة ساكنة هذا يعني أن قوة ستوكس معدومة $\overrightarrow{F_S}=0$ ، إذن لدينا ثلاثة قوى و هي

الاسقاط:
$$\overrightarrow{F_e} + \overrightarrow{F_A} + \overrightarrow{P} = \overrightarrow{0}$$

$$q E + V \rho_{air} g = m g$$

$$E = \frac{m g - V \rho_{air} g}{q} = \frac{g(V \rho_h - V \rho_{air})}{q}$$

$$\overrightarrow{P} \Rightarrow E = \frac{g V(\rho_h - \rho_{air})}{q} = \frac{g \frac{4}{3} \pi r^3 (\rho_h - \rho_{air})}{q}$$

$$et \ on \ a : E = \frac{U_2}{d} \quad Donc \ \Rightarrow \ U_2 = \frac{g \frac{4}{3} \pi r^3 (\rho_h - \rho_{air}) d}{q}$$

$$\Rightarrow U_2 = \frac{9,81 \times \frac{4}{3} \times 3,14 (10^{-6})^3 (920 - 1,21) 16 \times 10^{-3}}{7,964 \times 10^{-19}} = 756,63 \ Volt$$

حل التمرين 4:

أ- 1- تحديد الرقم الذري Z ، العدد الكتلي A ، عدد البروتونات (P) ، عدد النيترونات (D) و عدد الإلكترونات (D) لكل من النظيرين (D) و عدد الإلكترونات (D) عدد الإلكترونات (D) و عدد الإلكترونات (D)

(u) 77E	عدد (L)	(e) 77E	العدد الكتلي A	الرقم الذري Z	النظير
5	5	5	10	5	¹⁰ B
6	5	5	11	5	¹¹ B

11 B و 10 B عديد النسبة المئوية للنظيرين

نضع X و Y هما النسب المئوية لكل من لكل 10 و 11 على الترتيب حيث من أجل هاذين النظيرين يمكن كتابة جملة المعادلتين التاليتين:

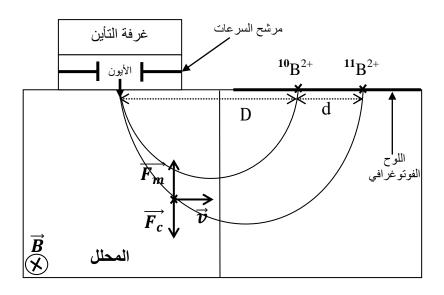
$$\begin{cases} X\left(m_{10B}^{10}\right) + Y\left(m_{11B}^{11}\right) = 100 \ (\overline{m}_B) \\ X + Y = 100 \end{cases}$$

$$\Rightarrow \begin{cases} X\left(10,01294\right) + Y\left(11,00931\right) = 100 \ (10,811402)....(1) \\ X + Y = 100 \(2) \end{cases}$$

De (2)
$$\Rightarrow X = 100 - Y$$

نعوضها في العبارة (1) فنجد:

$$10,01294 (100 - Y) + 11,00931 Y = 1081,1402$$


$$\Rightarrow$$
 1001,294 - 10,01294 Y + 11,00931 Y = 1081,1402

$$\Rightarrow$$
 0,99637 Y = 79,8462 \Rightarrow Y = 80,13 % donc X = 19,86 %

و منه النسب المئوية لكل من ${}^{10}\mathrm{B}$ و ${}^{11}\mathrm{B}$ هي ${}^{8}0,86$ و ${}^{8}0,13$ على الترتيب.

 $^{-11}$ 2 عات : $^{-10}$ 1 بعد خروجها من مرشح السرعات : $^{-11}$ 2 بعد خروجها عن مرشح السرعات :

الشوارد أو الأيونات داخل المحلل تخضع للحقل المغناطيسي مما يجعلها تسير بحركة دائرية منتظمة إلى غاية إصطدامها باللوح الفوتوغرافي ، و حركتها الدائرية ناتجة عن خضوعها لقوتين متعاكستين في الإتجاه و متساويتين في الشدة ، القوة المغناطيسية $\overrightarrow{F_m}$ و قوة الطرد المركزي $\overrightarrow{F_c}$ كما هو موضح في الشكل:

حيث يمكن كتابة:

$$\overrightarrow{F_m} = \overrightarrow{F_c}$$
 et aussi $F_m = F_c$ où $F_m = q v B$ et $F_c = \frac{m v^2}{R}$

$$\Rightarrow q v B = \frac{m v^2}{R} \quad \text{et on } a : R = \frac{D}{2}$$

حيث R و D هما على الترتيب نصف قطر و قطر المسار الدائري للأيون.

$$\Rightarrow q B = \frac{2 m v}{D} \Rightarrow D = \frac{2 m v}{q B}$$

المسافة الفاصلة بين نقطتي اصطدام الشاردتين ${}^{10}B^{2+}$ و ${}^{11}B^{2+}$ على اللوح الفوتوغرافي هي: d=2cm ، و بما أن D هي قطر المسار الدائري و تمثل كذلك المسافة بين نقطة دخول الأيون إلى المحلل و نقطة إصطدامه باللوح الفوتوغرافي فإنه من أجل هاذين الأيونين يمكن أن نكتب:

$$D_2 - D_1 = d$$

$$Donc D_1 = \frac{2 m_1 v}{q B} \text{ et } D_2 = \frac{2 m_2 v}{q B}$$

$$\Rightarrow d = D_2 - D_1 = \frac{2 v}{q B} (m_2 - m_1)$$

$$\Rightarrow v = \frac{d q B}{2 (m_2 - m_1)} = \frac{2 \times 10^{-2} (2 \times 1,6 \times 10^{-19}) 0,5}{2 (11,00931 - 10,01294) 1,66 \times 10^{-27}}$$

$$\Rightarrow v = 9,67 \times 10^5 \text{ m/s}$$

ج ـ الأيونات B^+ تعطي نقطتين على اللوح الفوتوغرافي تكافئ الأيونين B^+ و B^+ ، و منه في النهاية يكون لدينا على اللوح الفوتوغرافي أربعة نقاط تكافئ الأيونات : B^+ ، B^+ و B^+ ، B^{-11} و B^{-11} .

و لتمثيل نقاط إصطدام هته الشوارد الأربعة باللوح الفوتو غرافي يجب أن نحسب D لكل أيون حيث لدينا:

$$D = \frac{2 m v}{q B}$$

$$D_{10_{B^{+}}} = \frac{2 v m_{(10_{B^{+}})}}{q B} = \frac{2 \times 9,67 \times 10^{5} (10,01294 \times 1,66 \times 10^{-27})}{(1,6 \times 10^{-19}) \ 0,5} = 40 cm$$

$$D_{11_{B^{+}}} = \frac{2 v m_{(11_{B^{+}})}}{q B} = \frac{2 \times 9,67 \times 10^{5} (11,00931 \times 1,66 \times 10^{-27})}{(1,6 \times 10^{-19}) \ 0,5} = 44 cm$$

$$D_{10_{B^{2+}}} = \frac{2 v m_{(10_{B^{2+}})}}{q B} = \frac{2 \times 9,67 \times 10^{5} (10,01294 \times 1,66 \times 10^{-27})}{(2 \times 1,6 \times 10^{-19}) \ 0,5} = 20 cm$$

$$D_{11_{B^{2+}}} = \frac{2 v m_{(10_{B^{2+}})}}{q B} = \frac{2 \times 9,67 \times 10^{5} (11,00931 \times 1,66 \times 10^{-27})}{(2 \times 1,6 \times 10^{-19}) \ 0,5} = 22 cm$$

إذن من خلال قيم D للأيونات الأربعة يمكننا تمثيل نقاط إصطدامها على اللوح الفوتو غرافي كالتالي:

$$^{10}B^{2+}$$
 $^{11}B^{2+}$ $^{10}B^{+}$ $^{11}B^{+}$ $^{11}B^{+}$