Centre universitaire Abd-Elhafid BOUSSOUF, Mila Département des Sciences de la Nature et de la Vie

TP N. 01 Méthodes d'Analyses

Absorption de Bleu de Coomassie dans le visible

PARTIE 1 : Préparation de la gamme d'étalonnage

F	1	1/2	1/5	3/20	1/10	3/50	1/25	1/50	1/100
© de SM=10g/100ml	10								
V1 de SM	6								
V de H2O	0								
Vf	6								

PARTIE 2 : chercher λ_{max} du Bleu de Coomassie par balayage de la zone du visible

- Utiliser le 5eme tube pour balayer la zone du visible (400 à 800nm) avec des pas de 20nm
- Déterminer la zone approximative de λ_{max}
- Balayer la zone de λ_{max} avec des pas de 5nm
- Déterminer la zone approximative de λ_{max}
- Déterminer λ_{max} exacte en lisant l'absorbance chaque 1nm

PARTIE 3: tracer la courbe d'étalonnage du bleu de coomassie

- Fixer λmax sur le spectrophotomètre
- Lire les absorbances des différents tubes (dillutions)
- Tracer la courbe Abs=f(c) (échelle exacte)

Compte rendu:

Faire ressortir à partir de la courbe : C_{max} , ϵ , C_1 et C_2 .