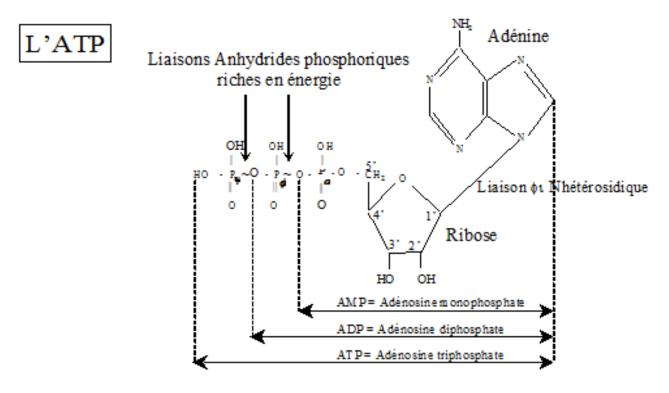

ENERGETIQUE CELLULAIRE: ATP.


- Anabolisme:réactions endergoniques
- Catabolisme:réactions exergoniques

ATP=Adénosine-P~P~P énergétique de la liaison.

~: Symbole utilisé pour matérialiser l'intérêt

- ATP (109 moles/ cellule) = forme de stockage et de transport énergétique de la cellule
- · Deux liaisons riches en énergie
- Durée de vie très brève (1 min): renouvellement rapide
- · Consommation au cours d'un exercice violent : 0,5 kg/ min

ATP = source d'énergie

L'ATP est une source d'énergie :

- soit par hydrolyse d'une liaison anhydride d'acide
- · soit par transfert d'énergie dans une liaison P

Chaque réaction est irréversible $AG^{0'} \models -30.5 \text{ kJ/mol}$ $ATP + H_2O \longrightarrow ADP + P_i + H^+$ $AG^{0'} = +30.5 \text{kJ/mol}$

[ATP] + [ADP] = constante, mais le rapport ATP/ ADP varie en fonction de l'état énergétique de la cellule

Les 4 types de liaisons riches en énergie = Liaisons à haut potentiel d'hydrolyse

Leur hydrolyse est très exergonique : < - 25 kJ/mol

1 - Liaison anhydride phosphorique: ATP

 $\begin{array}{ll} \text{ATP} & \longrightarrow \text{ADP} + \text{P}_{\text{i}} + \text{H}^{+} & \text{AG}^{\text{0}} = -30,5 \text{ kJ/mol} \\ \text{ADP} & \longrightarrow \text{AMP} + \text{P}_{\text{i}} + \text{H}^{+} & \text{AG}^{\text{0}} = -30,5 \text{ kJ/mol} \end{array}$

ATP \longrightarrow AMP + PP_i + 2H⁺ AG⁰' = - 32,5 kJ/mol

2 - Liaison anhydride d'acide : 1,3 bis phosphoglycérate

P- CH2 - CHOH - CO ~ P

 $AG^{0'} = -49 \text{ kJ/mol}$

3 - Liaison énol phosphate : Phosphoénol pyruvate (PEP)

$$\begin{array}{ccc} \textbf{COO}^{\text{-}} & \textbf{O}^{\text{-}} \\ \textbf{C} & \textbf{O} & \textbf{P} & \textbf{O} \\ \textbf{CH}_2 & \textbf{O} \end{array}$$

 $AG^{0'} = -62 \text{ kJ/mol}$

4 - Liaison thioester : Acétyl CoA

$$CH_3 - CO \sim S - CoA$$

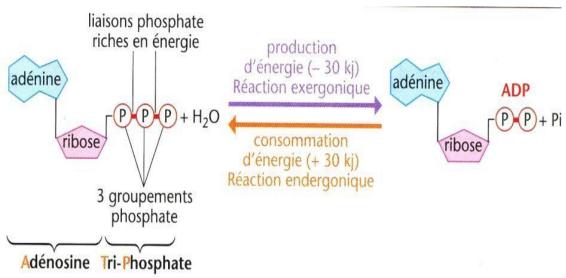
Acyl CoA

CH₃ - (CH₂)_{n-2} - CO ~ S - CoA

AG⁰' = - 31 kJ/mol

Energies libres standard de l'hydrolyse de composés <u>phosphorylés</u> et de l'acétyl-coenzyme A

Liaison riche en énergie si AG0' < - 25 kJ/mol


	A G ^o ' kJ/mol	
Phosphoénolpyruvate	-61,9	
1,3-Bisphosphoglycérate (□3-Phosphog 49,3 Créatinine phosphate	-43,0	ā
PPi (□ 2P _i) ATP (□ AMP+ PP _i)	-33,4 -32,2	Riche
Acétyl-CoA ADP (□AMP+P _i)	- 31,4 -30,5	
ATP (□ADP+ P _i)	-30,5	
Glucose-1-phosphate	-20,9	he
Fructose-6-phosphate	-15,9	Non Riche
AMP (□ Adénosine + P _i)	-14,2	چ
Glucose-6-phosphate	-13,8	£
Glycérol-1-phosphate	- 9,2	

ROLE DE L'ATP

• L'hydrolysedel'ATPenADPfournitl'énergiecellulaire (30kJ)

$$\begin{array}{c} \text{ATPase} \\ \text{ATP + H}_2\text{O} & \longrightarrow \text{ADP +Pi + 30 kJ} \end{array}$$

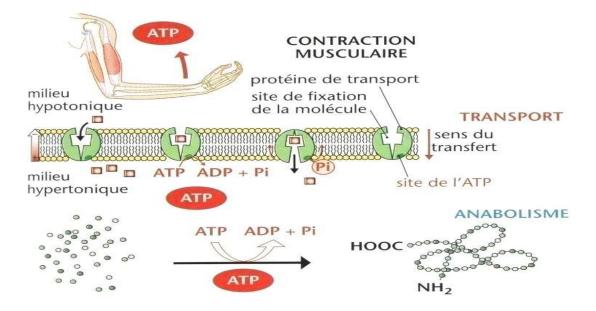
• Laphosphorilationdel'ADPpermetlasynthèsed'ATPet est couplée à une réaction exergonique (catabolismeduglucoseparexemple)

L'ATP est utilisé dans tous les processus cellulaires. nécessitant de l'énergie.

L'ATPouadénosinetriphosphate.

Adénine-ribose-phosphate-phosphate ATP=Adénosine P~P~P

~: liaisonricheenénergie.


L'hydrolysedel'ATPenADPfournitl'énergiecellulaire(30kJ). Laphosphorylationdel'ADPpermetlasynthèsed'ATP.

$$\begin{array}{c} \text{ATPase} \\ \text{ATP + H}_2\text{O} & \longrightarrow \text{ADP +Pi + 30 kJ} \end{array}$$

Le sangdistribueles nutriments aux différents organes. Les nutriments sont utilisés pour fournir aux cellules :

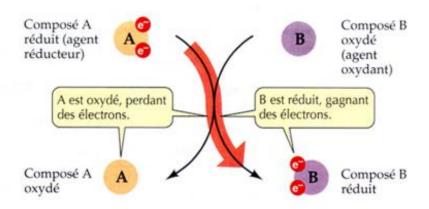
- ➤ Del'énergie, c'est sur tout le cas du glucos equi est catabolis é (dégradé) pour la formation d'ATP. Le catabolisme est un ensemble de **réactions exergoniques** (qui libèrent del'énergie)
- ➤ De la matière.Lescellulessynthétisentdes molécules.Ces**réactions**sont **endergoniques**(quiconsommentdel'énergie(ATP)etconstituentl'anabolisme.

SYNTHESE D'ATP = CATABOLISME DU GLUCOSE

Plusieursétapessontnécessairesàla dégradationduglucose:

Etapesdeladégradationincomplètedu glucoseen anaérobiose: fermentation		Etapes de la dégradation complète du glucoseenaérobiose: respirationcellulaire		
Noms des étapes	Localisation cellulaire	Nom des étapes	Localisationcellulaire	
➢ Glycolyse➢ Fermentation lactique	Cytoplasme Cytoplasme	➤ Glycolyse ➤ CycledeKrebs ➤ Phosphorylation oxydative	Cytoplasme Matrice mitochondriale Membraneinternedes mitochondries	

1 - Notions d'oxydation et de réduction


Oxydation Réduction
Gain d'oxygène Perte d'hydrogène
Perte d'électrons Gain d'hydrogène
Gain d'électrons

2 - Réaction d'oxydo-réduction

Dans une réaction d'<u>oxydo-réduction</u> il y a un couple d'<u>oxydo-</u>réduction constitué de 2 demi-réactions qui sont couplées et réversibles avec:

- un réducteur qui fournit des H+(et des électrons) et s'oxyde
- un oxydant qui capte des H+(et des électrons) et se réduit

Oxydation et réduction

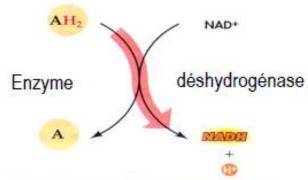
L'oxydation et la réduction sont couplées.

Un composé A est oxydé, et un composé B est réduit dans une réaction d'oxydo-réduction. Dans le processus, A perd des électrons et B en gagne.

4 types de transfert d'électrons pour le vivant

1 Transfert direct sous forme d'électrons :

le couple redox Fe2+/Fe3+ peut transférer un électron au couple Cu+/Cu2+


$$Fe^{2+}$$
 + Cu^{2+} \longrightarrow Fe^{3+} + Cu^{+}

2 Transfert sous forme d'atomes d'hydrogènes

hydrogène = un proton + un électron

3 Transfert sous forme d'un ion hydrure

hydrure = un proton et 2 électrons

4 Transfert sous forme d'incorporation d'oxygène (combustion)

oxydation d'un glucide pour donner un alcool

$$R-CH_3 + 1/2O_2 \longrightarrow R-CH_2-OH$$

1º étapedu catabolismeduglucose: Laglycolyse localisation: cytoplasme

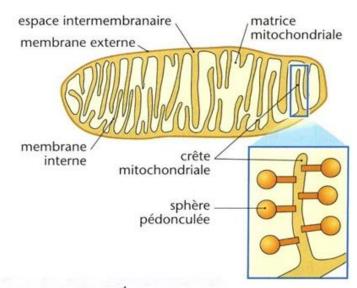
□ NAD = Transporteur de protons et d'électrons

$$\begin{array}{c} \hline & R\acute{e}duction : 2 \ H^+ + 2 \ e^- \\ \hline \hline & NAD^+ \\ \hline \'Etatoxyd\acute{e} & 2H^+ + 2 \ e^- : Oxydation \\ \hline & Etat \ r\acute{e}duit \\ \hline \end{array}$$

- □ Bilan
 - O 2 mol. d'acide pyruvique
 - O 2 mol. d'ATP
 - 2 mol. de transporteurs réduits (NADH + H*)

☐ Equation bilan.

Glucose + 2NAD⁺ 2acidepyruvique + 2(NADH +H⁺)


Transporteur oxydé: T⁺ 2 (ADP + Pi) 2 ATP Transporteur réduit: TH, H⁺

La mitochondrie :organite cellulaire indispensable àla respiration cellulaire.

Les sphères pédonculées contiennent:

Enzymes = ATP synthétases

La chaîne respiratoire = ensemble de molécule transporteur d'électrons. Le transfert d'e-d'une molécule à l'autre se fait par une réaction d'oxydoréduction

 $A^+ + e^- \stackrel{1}{=} A$ Etat oxydé État rédui

A est une entité chimique : molécule, ion, etc.

La réaction 1 est une réduction. La réaction 2 est une oxydation. Le couple A⁺, A est appelé couple redox.

2° étapeducatabolismeduglucose: lecyclede Krebs localisation: matricemitochondriale

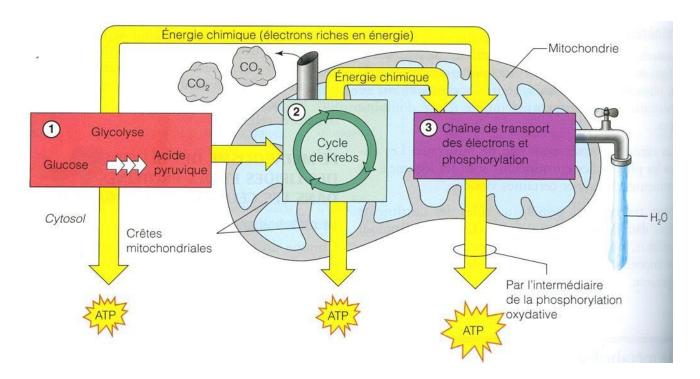
Acide pyruvique (composé à 3 atomes de carbone)

- Perd un CO2 (= décarboxylation)
- Perd un atome d'hydrogène(déshydrogénation)
- S'associe au coenzyme A et formel'acétyl CoA (composé à 2 atomes de carbone)

L'acétylCoAentredanslecycledeKrebs ense fixantsuruncomposéà4atomes de carbone

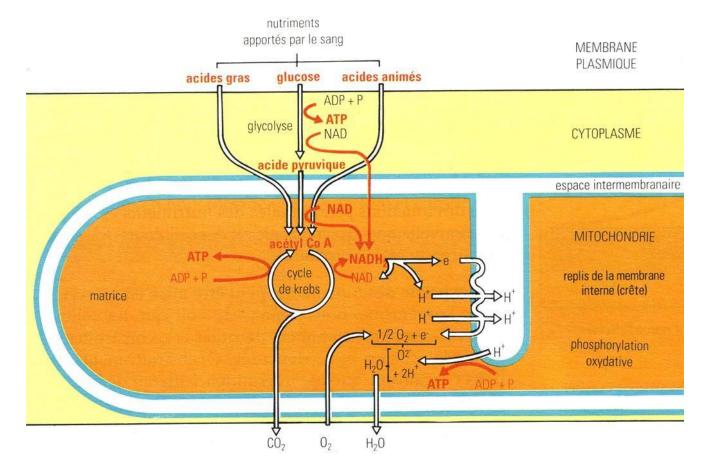
Cycle de Krebs:

Décarboxylation = pertede CO2


Déshydrogénation = LibérationdeH⁺ete⁻prisen charge par des transporteurs àl'étatoxydéNAD⁺et FAD⁺ qui passentàl'étatréduit: NADH2 etFADH2

Formation de 2 mol d'ATP

3°étapeducatabolismeduglucose:la phosphorylationoxydative


LetransfertdeH⁺del'espace inter-membranaireversla matrice mitochondriale se fait par les sphères pédonculéesce qui permet l'activationde l'ATPsynthétaseetdoncla formation d'ATP

Bilanducatabolismeenaérobieduglucose: 38 molécules d'ATP

Nomdes étapes	Localisation cellulaire	Bilan énergétique
 Glycolyse Glucose (C6) →2 ac. Pyruvique (C3) T⁺ (transporteuroxydé)+2H⁺ +e⁻ →TH,H⁺ (transporteur réduit) T=transporteur de protons et d'électrons ex:NAD 2 ADP + Pi → ATP 	Cytoplasme	2 ATP
 Cycle de Krebs Ac. Pyruvique(C3) + CoA → acétyl CoA (C2) + CO□ Acétyl CoA entre dans le cycle de Krebs: C2 + C4 → C6 ce qui aboutit à la formation :1ATP, CO□ et de TH, H⁺ 	Matrice mitochondriale	
Phosphorylation oxydative • TH, H $^+$ → T $^+$ + 2H $^+$ + 2e $^-$ (permetderégénérerles Tàl'état oxydée) • O \Box + 4 H $^+$ + 4 e $^-$ → 2 H \Box O • ATP	Membrane interne des mitochondries (chaîne respiratoire)	36 ATP

Catabolismedeslipidesetprotidesetduglucose

Organisation du transfert d'électrons entre les différents couple redox?

Le potentiel Rédox (1)

- 1- Toute réaction d'oxydo-réduction est décomposée en 2 demi-réactions qui sont couplées et réversibles
- 2- Chaque demi-réaction est caractérisée par un potentiel standard d'oxydoréduction E⁰
- 3- On appelle oxydant la demi-réaction renfermant l'agent oxydant (qui capte des e⁻)
- 4- On appelle réducteur la demi-réaction renfermant l'agent réducteur (qui libère des e⁻)

 Exemple de couples : AH₂/A et BH₂/B
- 5- Le potentiel <u>rédox</u> (ou potentiel de réduction) E⁰'
 <u>d'un</u> couple d'<u>oxydo-réduction</u> (ex : AH₂/A ou BH₂/B)
 mesure son affinité pour les électrons.

Le potentiel Rédox (2)

- · Le potentiel rédox est une constante mesurée :
 - − à 25°C
 - à pH 7
 - qui dépend de la concentration initiale des espèces oxydées et réduites.
- Mise en présence de 2 couples d'oxydo-réduction AH₂/A et BH₂/B :
 le transfert des H+d'un couple à l'autre dépend du potentiel rédox de
 chaque couple : il se fait du couple qui a le potentiel le plus bas vers
 celui qui a le potentiel le plus élevé
- Si le potentiel <u>rédox</u> du couple B est plus élevé que celui du couple A
 E_B > E_A:

B = l'oxydant = potentiel le plus élevé A = le réducteur = potentiel le plus bas

AE =
$$E_B$$
 - E_A > 0, on aura:
AH₂ + B \longrightarrow A + BH₂

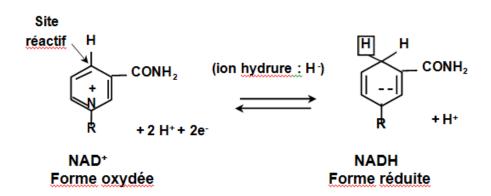
Relation entre la différence de potentiel <u>rédox</u> AE⁰' et la variation d'énergie libre standard AG⁰'

$$AG^{0'} = - \frac{nFAE^{0'}}{nFAE^{0'}}$$

F = Constante de Faraday (96 kJ/volt/mole) n = nombre d'e échangés dans la réaction

Exemple:

NAD++2 H++2e- NADH+H+
$$E^0$$
 = -0,32V $UQ+2$ H++2e- UQH_2 E^0 = +0,045V E^0 = +0,365V AG^0 ' = -69,5 kJ/mol

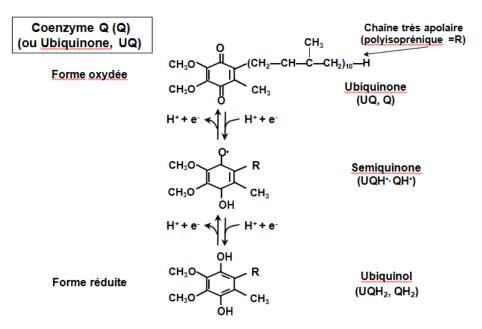

 Plus la différence entre les potentiels rédox est élevée, plus l'énergie libérée par la réaction d'oxydo-réduction est forte.

TRANSPORTEURS D'ELECTRONS

Nicotinamide Adénine Dinucléotide = NAD⁺
Nicotinamide Adénine Dinucléotide Phosphate = NADP

Forme oxydée de NAD+ et NADP+

NAD+ Coenzyme des déshydrogénases



- · Le NAD+ est un coenzyme libre : sa liaison aux enzymes est réversible

Flavine Mononucléotide (FMN) Flavine Adénine Dinucléotide (FAD)

FAD et FMN Coenzymes des déshydrogénases

Caractéristiques : – coenzymes liés à des <u>flavoprotéines</u>
 – enzymes présentes dans la membrane interne de la mitochondrie

 Caractéristiques : – coenzyme mobile peut échanger des électrons avec des coenzymes monovalents

Coenzyme <u>héminique</u> Les <u>cytochromes</u>

- Hème = Protoporphyrine IX + Fer (hémoglobine, cytochrome b)
- Noyau tétrapyrrolique

Caractéristiques : - coenzymes d'oxydo-réduction monovalents
 - transporteurs d'électrons

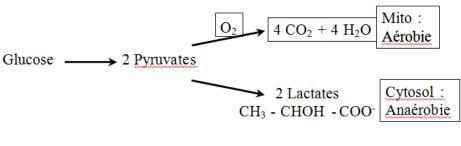
Glycolyse

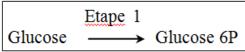
 Voie de dégradation du Glucose en Pyruvate dans les cellules :

$$\begin{array}{ccc}
1 \text{ Glucose} & \longrightarrow & 2 \text{ Pyruvates} + 2 \text{ ATP} \\
\text{(C6)} & \text{(C3)}
\end{array}$$

- Le Glucose a plusieurs origines :
 - Hydrolyse des osides alimentaires : glucose circulant
 - Glycogène hépatique et musculaire
 - Interconversion d'autres oses (fru, gal, man) en Glc

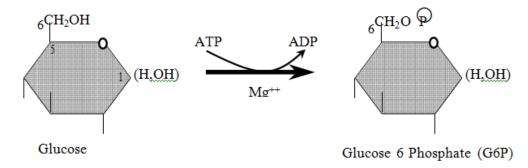
Caractéristiques de la Glycolyse


- · Voie anaérobie cytosolique
- 10 réactions enzymatiques divisées en 2 phases :
 - la phase préparatoire jusqu'à la 5ème étape incluse
 - la phase de restitution d'énergie de la 6ème étape à la fin
- Produit 2 ATP
- Toutes les étapes sont réversibles sauf 3 sur lesquelles se font les régulations


Place de la glycolyse dans le métabolisme énergétique

- En aérobiose : mitochondrie les 2 Pyruvates formés à partir du Glc dans la glycolyse entrent dans le cycle de Krebs où ils sont dégradés en 4 CO₂ + 4 H₂O
- 2) En anaérobiose : cytosol

 le Pyruvate est réduit en lactate


 fermentation lactique

Phosphorylation du glucose: Hexokinase (HK)

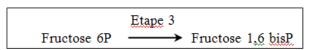
- · Réaction irréversible = très exergonique
- · Enzyme ubiquitaire, non spécifique, forte affinité
- Enzyme Mg dépendant : Fixation du complexe ATP-Mg sur l'enzyme
- 1 ATP consommé
- · Rétrocontrôle négatif par G6P

· Foie : Glucokinase, spécifique du Glc, faible affinité.

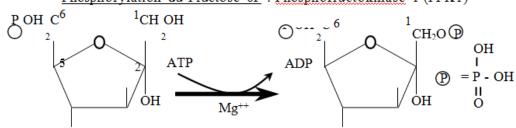
La 1ère étape est essentielle


Pour être métabolisé, le Glc doit être phosphorylé en G 6P :

- le G 6P, fortement chargé, ne peut plus sortir de la cellule : il s'engage dans la glycolyse
- l'énergie est conservée
- <u>lesenzymes delaglycolyse</u> (<u>complexeavec</u> Mg⁺⁺) reconnaissent leurs substrats

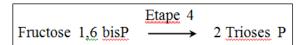

Isomérisation: Phospho Hexoisomérase

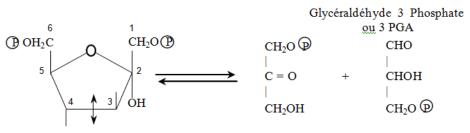
- Transformation d'un aldose en cétose
- Conduit du glucose pyranique au fructose furanique
- · Réaction réversible



Glucose 6 Phosphate (G 6P)

Fructose 6 Phosphate (F 6P)


Phosphorylation du Fructose 6P: Phosphofructokinase 1 (PFK1)

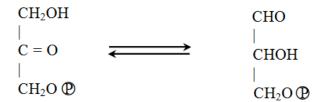

Fructose 6 Phosphate (F 6P)

Fructose 1.6 bisPhosphate (F 1.6 biP)

- Réaction fortement exergonique = irréversible
- 1 ATP consommé
- PFK1 est une Enzyme clé : sa vitesse est la plus lente de la glycolyse
 - étape <u>limitante</u> de la voie métabolique
 - sa régulation est étroite (ATP, AMP ...)
 - dépend du niveau énergétique de la cellule

Clivage du Fructose 1,6 bis P : Aldolase

Fructose 1.6 bisPhosphate (F 1.6 biP)


Dihydroxy Acétone Phosphate

• Réaction très <u>endergonique</u> : possible car seul le Glycéraldéhyde 3P formé poursuit la glycolyse, ce qui déplace l'équilibre vers la droite : réaction réversible

Etape 5 Isomérisation des Trioses P

Isomérisation: Triose Phosphate Isomérase

- Seul le Glycéraldéhyde-3P continue la glycolyse
- Sa dégradation continue dans la suite de la glycolyse déplace l'équilibre vers la droite : <u>réaction réversible</u>

<u>Dihydroxyacétone</u> Phosphate (96%)

Glycéraldéhyde 3 Phosphate

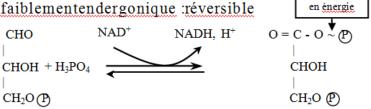
Bilan de la phase

Une molécule de Glc entraine :

•La consommation de 2 ATP
$$\stackrel{Glu}{\longleftarrow} \stackrel{Glu}{\longrightarrow} \stackrel{Glu}{\longleftarrow} \stackrel{6P}{\longleftarrow}$$

Fru $6P \longrightarrow Fru$ 1,6 bisP

•La formation de 2 Glycéraldéhydes-3P + 2 ADP


La phase préparatoire a un coût énergétique de 2 ATP

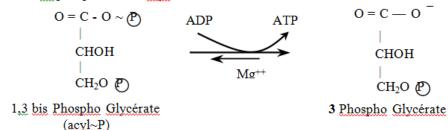
Phase de récupération d'énergie

Etape 6 Oxydation du Glycéraldéhyde 3P

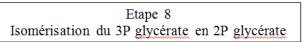
<u>Déshydrogénation</u>: Glycéraldéhyde-3P déshydrogénase (NAD+) (Oxydation)

- C'est une oxydation phosphorylante
 - Oxydation de la fonction aldéhyde en acide (-COOH)
 - Puis phosphorylation de l'acide formé en acyl~P, anhydride d'acide riche en énergie
- Réduction d'un accepteur d'hydrogène : NAD+
- Réactionfaiblementendergonique :réversible

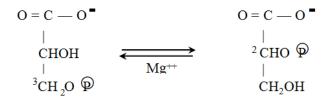
Glycéraldéhyde 3 Phosphate


1,3 bis Phospho Glycérate (acyl~P)

Liaison riche

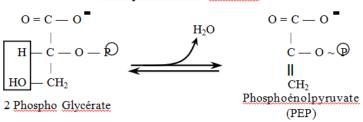

Etape 7 Transfert du Phosphate sur un ADP

Phosphorylation d'un ADP : Phosphoglycérate kinase


· La liaison riche en énergie est récupérée sous forme d'ATP par transfert du phosphate de l'acyl~P formé sur ADP :

- · Réaction très exergonique, mais couplée à l'étape précédente endergonique, elle devient réversible
- Bilan des réactions couplées 6 et 7 :

Déplacement d'un phosphate : Phosphoglycérate mutase


3 Phospho Glycérate

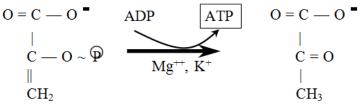
2 Phospho Glycérate

· Réaction faiblement endergonique, réversible

Etape 9 Déshydratation du <u>Phosphoglycérate</u> en PEP

Déshydratation: Énolase

• Formation d'une liaison énol \sim P riche en énergie par élimination d' H_2O


(AG0'= - 61,9kJ/mol, -17,6 kJ/mol pour une liaison ester ordinaire)

- Réaction faiblement endergonique, réversible
- F inhibe l'enzyme (intérêt : prélèvement de sang pour dosage glycémie)

Etape 10 Récupération de l'énergie du PEP

Phosphorylation d'un ADP: Pyruvate

kinase
• Transfert du phosphate : formation d'un ATP conservation de 30,5 kJ/mol


Phosphoénolpyruvate (PEP)

Pyruvate

- · Réaction très exergonique
- · Réaction irréversible
- Enzyme très importante dans la régulation du métabolisme

Schéma de la glycolyse (1)

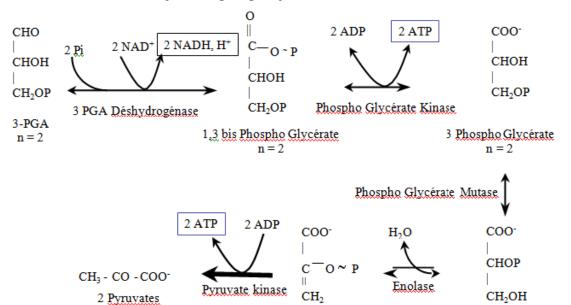

1 - Phase de préparation : activation 2 Phosphorylations = consommation de 2 ATP

Schéma de la glycolyse (2)

2 - Phase de restitution : récupération d'énergie

1 Oxydation phosphorylante + Gain de 4 ATP

Phosphoénol Pyruvate

n = 2

2 Phospho Glycérate

n = 2

Bilan de la glycolyse cytoplasmique (1)

• Le terme ultime de la glycolyse est le Pyruvate

$$\begin{array}{ccc}
1 & \underline{\text{hexose}} & \longrightarrow & 2 & \underline{\text{pyruvates}} \\
\hline
(C6) & & & & (C3)
\end{array}$$

- Jusqu'au stade pyruvate, toute la voie se déroule en anaérobiose dans le cytoplasme
- · La réaction générale s'écrit :

1 glucose
$$(C_6H_{12}O_6)$$
 \longrightarrow 2 pyruvates $(CH_3\text{-CO-COO}^-)$
+ 2 NAD+ + 2 ADP + 2 NADH, H+ + 2 ATP
+ 2 P_i + 2 H₂O

Bilan énergétique de la glycolyse cytoplasmique (2)

- 1. Le bilan énergétique en anaérobiose (jusqu'au Pyruvate) :
 - 2 réactions consomment de l'énergie : 2 ATP
 - 2 réactions produisent de l'énergie : +4 ATP
 - La synthèse nette en anaérobiose est donc de : 2 ATP
- 2. Bilan en aérobiose:
 - Les 2 NADH, H⁺ formés par mole de <u>Glc</u> donnent dans la chaînerespiratoire

$$3 \text{ ATP x } 2 = 6 \text{ ATP}$$

• En aérobiose, le bilan total est donc : 6 + 2 = 8 ATP

Les étapes de régulation de la glycolyse

Les enzymes catalysant les réactions très <u>exergoniques</u> sont limitantes :

- 1) Hexokinase : peu limitante, régulation allostérique par G 6P
- 2) Pyruvate kinase : régulation allostérique par l'ATP (-)
- 3) <u>Phosphofructokinase</u> (PFK1) : enzyme clé, très <u>limitante</u>, régulation allostérique par de nombreux effecteurs :

Activateurs de PFK1	Inhibiteurs de PFK1
AMP	ATP
ADP	Citrate
F 2,6 bisP	
F 6P	

Caractéristiques d'un Enzyme clé

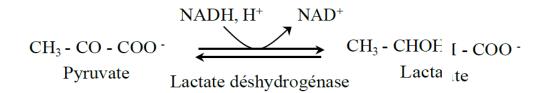
- régule une voie métabolique
- catalyse l'étape d'engagement
- catalyse la réaction la plus lente
- allostérie :

possibilité de rétrorégulation par :

- le produit final de la voie métabolique,
- ou celui d'une autre voie

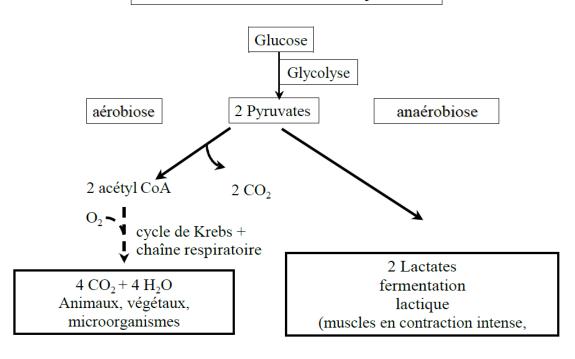
activation par phosphorylation ou déphosphorylation

Devenir du pyruvate


• Destinée différente en aérobiose et en anaérobiose

<u>I - Aérobiose (cellule de mammifère) dans la mitochondrie</u> :

- Le Pyruvate entre dans la mitochondrie où il est transformé en Acétyl-CoA par décarboxylation oxydative
- L'<u>Acétyl-CoA</u> est dégradé dans le cycle de Krebs en CO₂ + H₂O : Glucose → 2 Pyruvates → 2 AcétylCoA → 4 CO₂ + 4 H₂O
- Formation de coenzymes réduits qui entrent dans la chaîne respiratoire mitochondriale


II - Anaérobiose dans le cytosol:

- Le NADH produit par la glycolyse ne peut pas rentrer dans la mitochondrie, donc ne rentre pas dans la chaîne respi ratoire
- Il sert à réduire le Pyruvate en Lactate

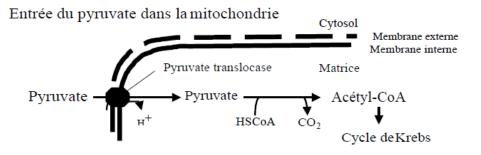

- La fermentation lactique s'observe
 - dans les muscles en contraction intense
 - dans les globules rouges
 - dans les microorganismes

Schéma du devenir du Pyruvate

Décarboxylation oxydative du Pyruvate en AcétylCoA (Aérobiose)

- Le Pyruvate entre dans la mitochondrie et se transforme en AcétylCoA
- L'AcétylCoA formé rentre dans le cycle de Krebs

α-Décarboxylation oxydative du pyruvate par la pyruvate déshydrogénase

- Pyruvate déshydrogénase = complexe multienzymatique constitué de 3 enzymes : E1, E2, E3
- La réaction met en jeu 5 coenzymes :
 - 3 sont liés à l'enzyme : E1-Thiamine PyroPhosphate (TPP) E2-Acide lipoïque E3-FAD
 - 2 sont libres : NAD+ CoA-SH

$$\begin{array}{c} \text{NAD}^{+} & \text{NADH, H}^{+} \\ + \text{CoA-SH} & + \text{CO}_{2} \\ \text{CH}_{3}\text{- CO - COO} & \\ \text{Pyruvate} & \text{(E1-TPP, E2-lipoïque, E3-FAD)} & \text{CH}_{3}\text{- CO} \sim \text{S - CoA} \\ & \text{Acétyl-CoA} \end{array}$$

· Elle agit en 5 étapes

Bilan de la décarboxylation oxydative du pyruvate

- Formation :
 - d'une liaison thioester riche en énergie avec l'Acétyl-CoA
 - d'un NADH, H⁺qui donnera 3 ATP dans la chaîne respiratoire
- Réaction fortement exergonique : irréversible

Pyruvate Acétyl-CoA

$$CH_3 - CO - COO^ + CoA-SH + NAD^+$$
 $+ CO_2 + NADH, H^+$

• Enzyme régulée par les substrats (NAD+, CoA-SH, AMP) par les produits (NADH, Acétyl-CoA, ATP)

Vue d'ensemble sur le cycle de Krebs

- 1 Il a pour but:
 - d'oxyder l'acétylCoA en 2 CO₂ + 2 H₂O
 - d'extraire l'énergie de l'acétylCoA et
 - de réduire NAD+ en NADH, H+ FAD en FADH₂ qui entrent dans la CRM
- 2 Il nécessite un ensemble coordonné de 8 réactions qui catabolisent

l'AcétylCoA (← glucides, AG, certains AA) et qui se font :

- en aérobiose, dans la matrice mitochondriale
- grâce à 7 enzymes solubles
- et 1 enzyme fixé dans la membrane interne : la succinate déshydrogénase
- 3 Il est couplé à la CRM:

les coenzymes réduits formés dans le cycle (3 NADH, H⁺ et 1 FADH₂) permettent la synthèse d'ATP dans la CRM

Les réactions du cycle de Krebs

Le cycle de Krebs comporte 8 étapes :

- 1 condensation de l'AcétylCoA avec l'oxaloacétate
 à 4 C → Acide Citrique (= Acide tricarboxylique)
- 2 décarboxylations
- 4 oxydations
- 1 phosphorylation duGDP

Les huit étapes du cycle de Krebs

Etape 1

Condensation : AcétylCoA + Oxaloacétate = Citrate

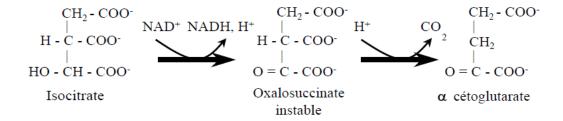
Condensation catalysée par la Citrate Synthase

• La caractéristique de cette réaction est la condensation de l'1 par son -CII₃ (et non son carboxyle)

$$O = C - COO^{-}$$
 $II_{2}O$ $CoA-SII$ CH_{2} $COA-SII$ CH_{2} $COA-SII$ CH_{2} $COA-SII$ CH_{2} $COA-SII$ CH_{2} $COA-SII$ CH_{2} CH_{2} CH_{2} CH_{3} CH_{2} CH_{3} CH_{4} $CITrate$ $Ac. tricarbo$

- Elle utilise l'énergie libérée par hydrolyse de la liaison thioe riche en énergie, de l'acétylCoA
- La réaction est fortement exergonique : irréversible
- L'enzyme est régulée

Etape 2 Isomérisation du citrate en isocitrate

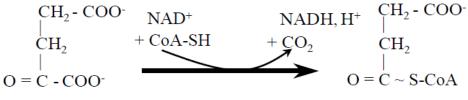

Isomérisation du Citrate : Aconitase

- Réaction en 2 étapes avec une déshydratation puis une réhydratation
- L'Aconitase intervient dans ces 2 étapes
- Permet la transformation de l'alcool tertiaire du Citrate en alcool secondaire de l'Isocitrate
- · Réaction réversible

$$\begin{array}{c} \text{CH}_2\text{-}\text{COO}^-\\ \text{HO} - \text{C} - \text{COO}^-\\ \text{CH}_2 - \text{COO}^-\\ \text{CH}_2 - \text{COO}^-\\ \text{CH}_2 - \text{COO}^-\\ \text{CH}_2 - \text{COO}^-\\ \text{Citrate} = \\ \text{Ac. tricarboxylique} \end{array} \qquad \begin{array}{c} \text{CH}_2\text{-}\text{COO}^-\\ \text{H}_2\text{O} \\ \text{CH}_2\text{-}\text{COO}^-\\ \text{HO} - \text{CH}_2\text{-}\text{COO}^-\\ \text{HO} - \text{CH} - \text{COO}^-\\ \text{Isocitrate} = \\ \text{Ac. tricarboxylique} \end{array}$$

Etape 3 $\phi\iota$ décarboxylation oxydative de l'isocitrate en α cétoglutarate

- φι Décarboxylation oxydative : Isocitrate déshydrogénase (NAD+)
- L'enzyme catalyse 2 étapes :
 - déshydrogénation en oxalosuccinate, φι cétoacide instable
 - φι décarboxylation spontanée en α cétoglutarate



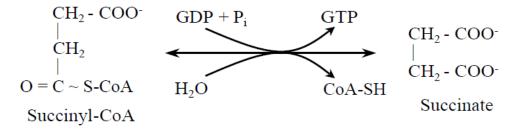
- Réaction fortement exergonique : irréversible
- Formation de NADH, H+
- · L'enzyme est régulée

Etape 4 α décarboxylation oxydative de l'α cétoglutarate en SuccinylCoA

Deuxième décarboxylation oxydative : α cétoglutarate déshydrogénase

- Complexe multienzymatique semblable à la pyruvate déshydrogénase avec 3 enzymes : E'1, E'2, E'3
- 5 coenzymes sont en jeu : 3 sont liés : TPP, acide lipoïque, FAD 2 sont libres : NAD+, CoA-SH

α cétoglutarate

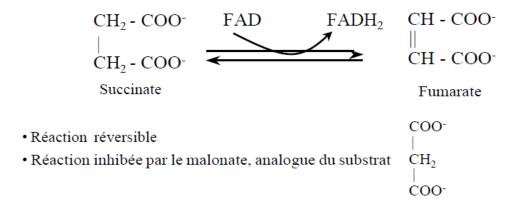

Succinyl-CoA riche en énergie (thioester)

- Formation d'une liaison thioester riche en énergie
 d'un NADH, H⁺
- Réaction fortement exergonique : irréversible
- L'enzyme est régulée

Etape 5 Conversion du succinyl-CoA en succinate

Phosphorylation du GDP: Succinyl-CoA synthase ou Succinyl thiokinase

- L'énergie contenue dans le succinyl-CoA est récupérée par phosphorylation du GDP en GTP (liaison anhydride phosphorique)
- Réaction réversible


• Le GTP régénère l'ATP à partir d'ADP

$$GTP + ADP \stackrel{Mg^{++}}{\longleftarrow} GDP + ATP$$

Etape 6 Déshydrogénation du succinate en fumarate

Réaction d'oxydation : Succinate déshydrogénase (FAD)

 L'enzyme est une flavoprotéine, liée à la membrane interne de la mitochondrie (complexe II de la chaîne respiratoire)

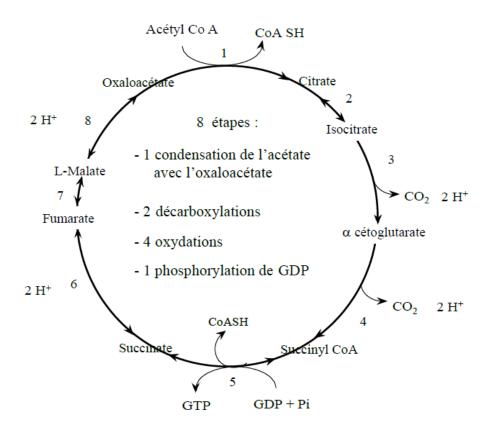
• Formation d'un FADH₂ → 2 ATPdans la chaîne respiratoire

Etape 7 Hydratation du fumarate en malate

Réaction d'hydratation: Fumarase

Réaction - réversible
 stéréospécifique

Etape 8 Déshydrogénation du L-malate en oxaloacétate


Réaction d'oxydation : L-malate déshydrogénase (NAD+)

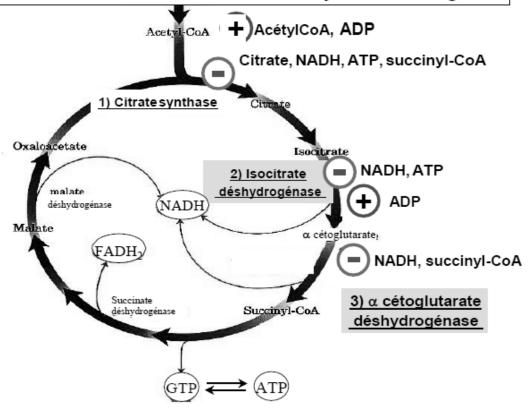
HO - CH - COO-
$$\begin{array}{c} & \text{NAD}^+ \\ & \text{H - CH - COO}^- \end{array}$$

NAD+
 $\begin{array}{c} & \text{NADH, H}^+ \\ & \text{CH}_2\text{- COO}^- \end{array}$

CH₂ - COO-
 $\begin{array}{c} & \text{Oxaloacétate} \\ & \text{Oxaloacétate} \end{array}$

- · Réaction réversible
- Formation d'un NADH, H⁺ → 3 ATP dans la chaîne respiratoire
- Cette réaction est très endergonique, mais comme l'oxaloacétate disparaît très vite dans un nouveau tour de cycle, la réaction va dans le sens de la formation d'oxaloacétate
- L'oxaloacétate régénéré peut faire un nouveau tour de cycle avec une nouvelle molécule d'acétylCoA

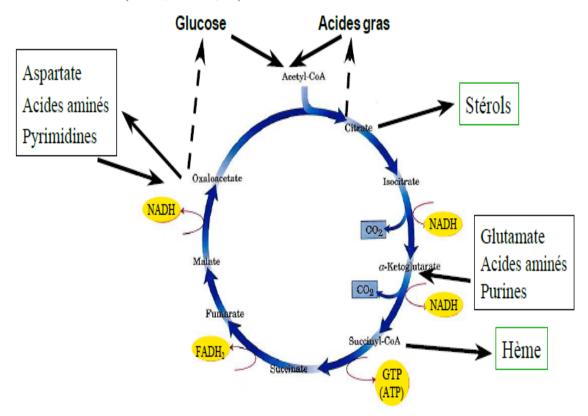
Une molécule d'Acétyl-CoA dégradée dans le cycle de Krebs couplé à la chaîne respiratoire produit 12 ATP


SUBSTRAT	COENZYME	•ATP FORMÉS	
Isocitrate			
ê α cétoglutarate	NADH, H ⁺	3	
ê Succinyl-CoA	NADH, H ⁺	3	
ê Succinate	⊷S-CoA à GTP à ATP	1	
ê	FADH ₂	2	
Fumarate	radii ₂	2	
ê			
Malate			
ê Oxaloacétate	NADH, H ⁺	3	

Total = 12 ATP par molécule d'AcétylCoA

Régulation du cycle de Krebs

- 1 La vitesse d'oxydation de l'acétyl-CoA dans le cycle de Krebs dépend :
 - de la concentration en acétyl-CoA qui provient de la glycolyse et de la φι oxydation des acides gras
 - de l'accumulation des produits énergétiques : NADH (fonctionnement de la chaîne respiratoire) et ATP (niveau énergétique de la cellule)
 - de l'accumulation de produits intermédiaires du cycle
- 2 Le cycle ne peut fonctionner que si, en aval, la CRM dispose d'un apport suffisant en O₂


3 réactions sont irréversibles : les 3 enzymes sont régulés

• La régulation du cycle de Krebs est coordonnée avec la glycolyse : leur régulation se fait en parallèle par les mêmes produits énergétiques

Importance du cycle de Krebs

- Conservation efficace de l'énergie
- Sert d'intermédiaire entre catabolisme et anabolisme
- Certains intermédiaires (AA, ...) sont des produits de dégradation d'autres molécules que le glucose et les acides gras
- Certains intermédiaires en C4 et C5 servent à la synthèse d'autres molécules (hème, stérols,...)

Bilan énergétique total de la dégradation du glucose
$en CO_2 + H_2O = 38 ATP$

	ATP ou			ı	
	Réaction	Coenzymes réduits formés A		ATP	
Glucose		Glucose 6P	- 1 ATP	- 1	
Fructose 6P	—	Fructose 1,6 bisP	- 1 ATP	- 1	
2 Glycéraldéhyde 3P	—	2 1,3 bis Phospho Glycérate	2 NADH	6	8
2 1,3 bis Phospho Glycérate		2 3 Phospho Glycérate	2 ATP	2	
2 Phosphoénolpyruvate		2 Pyruvate	2 ATP	2	J
2 Pyruvate	\rightarrow	2 AcétylCoA	2 NADH	6	6
2 Isocitrate	→	2 α cétoglutarate	2 NADH	6	
2 α cétoglutarate		2 SuccinylCoA	2 NADH	6	
2 SuccinylCoA	\rightarrow	2 Succinate	2 GTP	2	>24
2 Succinate		2 Fumarate	2 FADH ₂	4	
2 L-malate	→	2 Oxaloacétate	2 NADH	6	J

Total ATP formés: 38

Bilan énergétique de la dégradation du glucose

- L'oxydation du glucose en CO_2 + H_2O fournit AG° = 2840 kJ/mol
- En aérobiose : formation de 38 ATP/mole de glucose = 1155 kJ/mol soit un rendement de 40%, le reste étant dissipé sous forme de chaleur donc 60 % d'énergie perdue
- En anaérobiose : formation de 2 ATP et de 2 lactates. Pour fournir la même énergie, il faut dégrader 19 fois plus de glucose, le catabolisme du Glc est donc beaucoup plus rapide