University Center A. Elhafidh Boussouf Mila Institute of Science and Technology 1st year ST

Experiment 3: Determination of the enthalpy heat of the dissolution ΔH_{diss}

Enthalpy :

The enthalpy of dissolution (heat of dissolution) is the heat accompanying the complete dissolution of 1 mol substance. This enthalpy of solution ($\Delta H_{solution}$) can either be positive if energy (heat) is absorbed (endothermic) or negative if energy (heat) is released (exothermic).

$$\Delta H_{diss} = \frac{Q}{n}$$

Where:

- ΔH_{diss} : The enthalpy of dissolution
- **Q** : The heat energy
- **n** : Number of moles

The objective of the experiment

In this practice, the objet is to determine the enthalpy of dissolution in water of sodium hydroxide, potassium hydroxide and ammonium chloride by calorimetry.

How to calculate

Since the system is isolated then $\sum Q_i = 0$ $Q_{\text{gained}} + Q_{\text{lost}} = 0$ $Q_{\text{cold water}} + Q_{\text{product}} + Q_{\text{calorimeter}} = 0$

Materials and Chemicals

Materials	Chemicals	
• Calorimeter with mixer	• Distilled water	
• Thermometer	 Sodium hydroxide (NaOH) 	
Heating device	• Potassium hydroxide (KOH)	
• Becher	• Ammonium chloride (NH ₄ Cl)	
Analytical balance		

Procedure

We take a becher and ignore its weight before filling it with m1=100 g of cool water.
 Put the cold water into the calorimeter.

3. We close the calorimeter and wait for thermal equilibrium to be achieved, and take a temperature reading of the system (cold water + calorimeter), let it be T_1 .

4. We take 5,61 g of the product we put it into the calorimeter.

5. We close the calorimeter and wait for thermal equilibrium to be achieved, and take a temperature reading of the system (cold water + product + calorimeter), let it be T_f . 6. Record the obtained results in the table.

Product	Mass of Cold	Mass of	Temperature of	Equilibrium
	Water m ₁ (g)	Product m ₂ (g)	Cold Water T ₁ (K)	Temperature $T_f(K)$
КОН				
NH ₄ Cl				

Answer the questions

- 1. Calculate the number of moles of KOH, and NH₄Cl that were put in the calorimeter
- **2.** Calculate Q_{product} produced by both reactions.
- **3.** Calculate the enthalpy ΔH_{KOH} and ΔH_{NH4Cl}
- 4. Predict the dissolution reaction type for KOH and $\rm NH_4Cl$
- **5.** Justify your answer.