Algèbre 2

0.1	Matrice associée à une application linéaire	2
0.2	Opérations sur les matrices	3
0.3	Espace vectoriel des matrices à n lignes et m colonnes	8
0.4	Matrices carrées	8
0.5	Rang d'une matrice	16

Matrices

0.1 Matrice associée à une application linéaire

Définition 0.1.1. Soient E et F deux \mathbb{K} -espace vectoriel de dimension finies n et m respectivement. Notons $B = \{e_1, e_2, \ldots, e_n\}$ une base de E et $B' = \{e'_1, e'_2, \ldots, e'_m\}$ une base F et $f \in \mathcal{L}(E, F)$. On appelle matrice de f dans les base B et B', notée $M_{B,B'}(f)$ la matrice $(a_{i,j})_{1 \leq i \leq n, 1 \leq j \leq m} \in \mathcal{M}_{n,m}(\mathbb{K})$ définie par :

$$M_{B,B'}(f) = \begin{pmatrix} a_{1,1} & \cdots & a_{1,j} & \cdots & a_{1,n} \\ a_{2,1} & \cdots & a_{2,j} & \cdots & a_{2,n} \\ \vdots & & \vdots & & \vdots \\ a_{m,1} & \cdots & a_{m,j} & \cdots & a_{m,n} \end{pmatrix} e'_{m}$$

Оù

$$f(e_j) = a_{1,j}e'_1 + a_{2,j}e'_2 + \dots + a_{m,j}e'_m, \quad j = \overline{1,m}.$$

Exemple 0.1.1. 1. Soit f l'application linéaire

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

 $(x,y,z) \longmapsto (x-y,x+y-z).$

On sait que $B = \{(1,0,0), (0,1,0), (0,0,1)\}$ la base canonique de \mathbb{R}^3 et $B' = \{(1,0), (0,1)\}$ la base canonique de \mathbb{R}^2 . On a

$$f((1,0,0)) = (1,1) = 1 \times (1,0) + 1 \times (0,1),$$

 $f((0,1,0)) = (-1,1) = -1 \times (1,0) + 1 \times (0,1),$
 $f((0,0,1)) = (0,-1) = 0 \times (1,0) - 1 \times (0,1).$

Alors,

$$M_{B,B'}(f) = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & -1 \end{pmatrix}.$$

2. Soit l'endomorphisme

$$g: \mathbb{R}_3[X] \longrightarrow \mathbb{R}_3[X]$$

$$P \longmapsto 2XP''.$$

La base canonique de $\mathbb{R}_3[X]$ est $B = \{1, X, X^2, X^3\}$. Alors

$$g(1) = 0$$
, $g(X) = 0$, $g(X^2) = 4X$ et $g(X^3) = 12X^2$,

donc

$$M_B(g) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 12 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Remarque 0.1.1. 1. Si E = F, on prend la même base B = B' et on écrit $M_B(f)$,

2. La matrice $M_{B,B'}(f)$ dépend de l'ordre des vecteurs de B et des vecteurs de B',

- **3.** $\dim(E) = nombre$ de colonnes de la matrice, $\dim(F) = nombre$ de lignes de la matrice,
- **4.** $\mathcal{M}_{n,m}(\mathbb{K})$ est l'ensemble des matrices à coefficients dans \mathbb{K} de taille $n \times m$,
- 5. Si n = m, on parle de matrices carrées de taille n,
- **6.** On parle de matrice ligne ou vecteur ligne si n = 1 et de vecteur colonne si m = 1,
- 7. La matrice dont tous les éléments sont égaux à 0 est la matrice nulle.

1. $A = \begin{pmatrix} -i & 2 \\ 1 - 1/2i & -2 + i \end{pmatrix}$ est une matrice carrée de taille 2 à coefficients dans \mathbb{C} . Exemple 0.1.2.

2.
$$B = \begin{pmatrix} 2 & 9 & e \\ 0 & -2 & 3\pi \end{pmatrix}$$
 est une matrice de taille 2×3 à coefficients dans \mathbb{R} .

2.
$$B = \begin{pmatrix} 2 & 9 & e \\ 0 & -2 & 3\pi \end{pmatrix}$$
 est une matrice de taille 2×3 à coefficients dans \mathbb{R} .

3. $v = \begin{pmatrix} 0 \\ 2 \\ 1 \\ 4 \end{pmatrix}$ est un vecteur colonne, $u = \begin{pmatrix} 0 & 1 & 1 & 3 \end{pmatrix}$ est un vecteur ligne.

Théorème 0.1.1. Pour toute matrice $A \in \mathcal{M}_{n,m}(\mathbb{K})$, il existe une et une seule application linéaire $f \in \mathcal{L}(E,F)$ telle que $M_{B,B'}(f) = A$. On l'appelle application linéaire associée à A relativement aux bases B et B'.

Définition 0.1.2. Deux matrices A et B sont égales lorsqu'elles ont la même dimension et que pour chaque ligne i et chaque colonne j, l'élément $a_{i,j}$ de la matrice A est égal à l'élément $b_{i,j}$ de la matrice B.

Théorème 0.1.2. Deux applications linéaire f et g de E dans F sont égales si et seulement si leurs *matrices associées Mat*_{B,B'}(f) *et M*_{B,B'}(g) *sont égales.*

0.2 **Opérations sur les matrices**

Somme de deux matrices 0.2.1

Définition 0.2.1. (Somme de deux matrices) Soient $A = (a_{ij})$ et $B = (b_{ij})$ deux matrice de $\mathcal{M}_{n,m}(\mathbb{K})$. La somme A+B est la matrice $(a_{ij}+b_{ij})$.

Exemple 0.2.1. 1. Si
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 1 & 0 & -1 \end{pmatrix}$$
 et $B = \begin{pmatrix} -4 & 1 & 1 \\ 2 & 3 & -1 \end{pmatrix}$, alors
$$A + B = \begin{pmatrix} 1 - 4 & -2 + 1 & 3 + 1 \\ 1 + 2 & 0 + 3 & -1 - 1 \end{pmatrix} = \begin{pmatrix} -3 & -1 & 4 \\ 3 & 3 & -2 \end{pmatrix}.$$

2. Si
$$A = \begin{pmatrix} -7 & 2 \\ 3 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & -1 \\ 1 & 3 \\ -4 & 5 \end{pmatrix}$, alors $A + B$ n'est pas définie.

Théorème 0.2.1. (*Propriétés de la somme matricielle*) Soient A, B et C trois matrices de même taille. La somme matricielle possède les propriétés suivantes :

- **1.** A + B = B + A: la somme est commutative.
- **2.** A + (B + C) = (A + B) + C: la somme est associative.
- 3. A + 0 = A: la matrice nulle est l'élément neutre de l'addition.

Théorème 0.2.2. (interprétation matricielle d'une addition d'applications linéaires) Soient E et F deux espaces vectoriels finis sur un même corps \mathbb{K} . Soient B_E et B_F des bases de E et F respectivement. Soient f et g deux applications linéaires de E dans F. Alors on a:

$$M_{B_E,B_F}(f+g) = M_{B_E,B_F}(f) + M_{B_E,B_F}(g).$$

0.2.2 Produit d'une matrice par un scalaire

Définition 0.2.2. (Produit d'une matrice par un scalaire) Soient $A = (a_{ij}) \in \mathcal{M}_{n,m}(\mathbb{K})$ et $\lambda \in \mathbb{K}$. Le produit λA est la matrice (λa_{ij}) .

Exemple 0.2.2. Si
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 1 & 0 & -1 \end{pmatrix}$$
, alors

$$2A = \begin{pmatrix} 2 \times 1 & 2 \times (-2) & 2 \times 3 \\ 2 \times 1 & 2 \times 0 & 2 \times (-1) \end{pmatrix} = \begin{pmatrix} 2 & -4 & 6 \\ 2 & 0 & -2 \end{pmatrix}.$$

Remarque 0.2.1. *La matrice* -A = (-1)A *est l'opposée de* A.

Théorème 0.2.3. (Propriétés de la multiplication par un scalaire) Soient A et B deux matrices de même taille et soient α et β deux scalaires. On a:

- 1. $(\alpha + \beta)A = \alpha A + \beta A$.
- **2.** $\alpha(A+B) = \alpha A + \alpha B$.
- 3. $\alpha(\beta A) = (\alpha \beta) A$.

0.2.3 Produit de deux matrices

Définition 0.2.3. Soient $A = (a_{ij}) \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B = (b_{ij}) \in \mathcal{M}_{p,m}(\mathbb{K})$. Le produit AB est la matrice $C = (c_{ij}) \in \mathcal{M}_{n,m}(\mathbb{K})$ définie par $c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$.

$$\begin{pmatrix} b_{1,1} & \cdots & b_{1,j} & \cdots & b_{1,m} \\ \vdots & & \vdots & & \vdots \\ & \cdots & b_{k,j} & \cdots & & \vdots \\ \vdots & & \vdots & & \vdots \\ b_{p,1} & \cdots & b_{p,j} & \cdots & b_{p,m} \end{pmatrix}$$

C = AB

В

$$\begin{pmatrix} a_{1,1} & \cdots & a_{1,k} & \cdots & a_{1,p} \\ \vdots & & \vdots & & \vdots \\ a_{i,1} & \cdots & a_{i,k} & \cdots & a_{i,p} \\ \vdots & & \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,k} & \cdots & a_{n,m} \end{pmatrix} \begin{pmatrix} c_{1,1} & \cdots & c_{1,k} & \cdots & c_{1,m} \\ \vdots & & \vdots & & \vdots \\ & & \cdots & c_{i,j} & \cdots \\ \vdots & & \vdots & & \vdots \\ c_{n,1} & \cdots & c_{n,k} & \cdots & c_{n,m} \end{pmatrix}$$

 \boldsymbol{A}

Exemple 0.2.3. 1. Posons

$$A = \begin{pmatrix} 1 & 3 \\ -2 & 1 \\ 0 & 1 \end{pmatrix} \quad et \quad B = \begin{pmatrix} 1 & -1 & 0 & -2 \\ 1 & 4 & -1 & -1 \end{pmatrix}.$$

Comme $A \in \mathcal{M}_{3,2}(\mathbb{R})$ et $B \in \mathcal{M}_{2,4}(\mathbb{R})$, alors le produit AB a un sens et $AB \in \mathcal{M}_{3,4}(\mathbb{R})$. De plus

$$\begin{pmatrix}
1 & -1 & 0 & -2 \\
1 & 4 & -1 & -1
\end{pmatrix}$$

$$A \qquad AB$$

$$\begin{pmatrix}
1 & 3 \\
-2 & 1 \\
0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
4 & 11 & -3 & -5 \\
-1 & 6 & -1 & 3 \\
1 & 4 & -1 & -1
\end{pmatrix}.$$

2. Considérons les matrices

$$A = \begin{pmatrix} 1+i & -i \\ 2 & i \end{pmatrix} \quad et \quad B = \begin{pmatrix} 3-i & 2i \\ 0 & 1 \end{pmatrix}.$$

Comme $A \in \mathcal{M}_2(\mathbb{C})$ et $B \in \mathcal{M}_2(\mathbb{C})$, alors le produit AB a un sens et $AB \in \mathcal{M}_2(\mathbb{C})$. De plus

В

$$\begin{pmatrix} 3-i & 2i \\ 0 & 1 \end{pmatrix}$$

A AB

$$\begin{pmatrix} 1+i & -i \\ 2 & i \end{pmatrix} \quad \begin{pmatrix} 4+2i & -2+i \\ 6-2i & 5i \end{pmatrix}.$$

3. Si $A = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & -1 \\ 5 & 1 \\ 3 & 1 \end{pmatrix}$, alors AB n'est pas défini car $A \in \mathcal{M}_{2,1}(\mathbb{R})$ et $B \in \mathcal{M}_{3,2}(\mathbb{R})$.

Remarque 0.2.2. 1. Si $A = \begin{pmatrix} -2 & 0 \\ 1 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} -1 & 0 & -1 \\ 3 & 1 & 2 \end{pmatrix}$, alors $AB = \begin{pmatrix} 2 & 0 & 2 \\ 2 & 1 & 1 \end{pmatrix}$ par contre BA n'a pas de sens. Donc, en général, $AB \neq BA$.

- **2.** Puisque $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, on déduit que AB = 0 n'implique pas A = 0 où B = 0.
- **3.** Le fait que $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}$, alors AB = AC n'implique pas B = C.

Théorème 0.2.4. (*Propriétés du produit matriciel*) Le produit matriciel possède les propriétés suivantes :

1. Si les produits AB et BC sont définis, alors les produits A(BC) et (AB)C le sont et on a

$$A(BC) = (AB)C.$$

2. Si B et C sont deux matrices de mêmes tailles et si A a autant de colonnes que B et C ont de lignes, alors

$$A(B+C) = AB + AC.$$

D'autre part, si A et B sont deux matrices de mêmes tailles et si C a autant de colonnes que A et B ont de lignes, alors

$$(B+C)=BA+CA.$$

3. $A \cdot 0 = 0$ et $0 \cdot A = 0$.

Théorème 0.2.5. (Interprétation matricielle d'une composée d'applications linéaires) Soient E, F et G trois \mathbb{K} -espaces vectoriels de dimension finie. Soient B_1, B_2, B_3 des bases respectives de E, F, G. Soient $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$. Alors

$$M_{B_1,B_3}(g \circ f) = M_{B_2,B_3}(g)M_{B_1,B_2}(f).$$

Démonstration . *Réfléchissez*, en utilisant la définition. \diamondsuit

Exemple 0.2.4. Considérons les applications

$$f: \mathbb{R}_3[X] \longrightarrow \mathbb{R}^3 \qquad et \qquad g: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
$$P \longmapsto (P(0), P'(0), P''(0)) \qquad (x, y, z) \longmapsto (x + y, x - z).$$

On a $f \in \mathcal{L}(\mathbb{R}_3[X], \mathbb{R}^3)$ et $g \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$.

Soient $B_1 = \{1, X, X^2, X^3\}$, $B_2 = \{(1,0,0), (0,1,0), (0,0,1)\}$ et $B_3 = \{(1,0), (0,1)\}$ les bases canoniques des \mathbb{R} -espaces vectoriels $\mathbb{R}_3[X]$, \mathbb{R}^3 et \mathbb{R}^2 respectivement. On a

$$f(1) = (1,0,0), \quad f(x) = (0,1,0), \quad f(X^2) = (0,0,2), \quad f(X^3) = (0,0,0),$$

et

$$g(1,0,0) = (1,1), \quad g(0,1,0) = (1,0), \quad g(0,0,1) = (0,-1)$$

donc

$$M_{B_1,B_2}(f) = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 2 & 0 \end{pmatrix} \quad et \quad M_{B_2,B_3}(g) = egin{pmatrix} 1 & 1 & 0 \ 1 & 0 & -1 \end{pmatrix}.$$

D'où

$$M_{B_1,B_3}(g \circ f) = M_{B_2,B_3}(g)M_{B_1,B_2}(f) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & -2 & 0 \end{pmatrix}.$$

0.2.4 Matrice transposée

Définition 0.2.4. (Matrice transposée) Soit $A \in \mathcal{M}_{n,m}(\mathbb{K})$. On appelle transposée de A la matrice ${}^tA \in \mathcal{M}_{m,n}(\mathbb{K})$ obtenue en échangeant les lignes et les colonnes de A.

Exemple 0.2.5.

$$t \begin{pmatrix} -1 & 2 & 0 \\ 11 & 0 & -2 \end{pmatrix} = \begin{pmatrix} -1 & 11 \\ 2 & 0 \\ 0 & -2 \end{pmatrix}$$

et

$$t \begin{pmatrix} 5 & 1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ 1 & -1 \end{pmatrix}.$$

Théorème 0.2.6. (Propriétés de la transposition)

- **1.** Pour tous $A, B \in \mathcal{M}_{n,m}(\mathbb{K})$ et $\alpha, \beta \in \mathbb{K}$: ${}^t(\alpha A + \beta B) = \alpha {}^tA + \beta {}^tB$.
- **2.** Pour tout $A \in \mathcal{M}_{n,m}(\mathbb{K})$: ${}^t({}^tA) = A$.
- **3.** Pour tous $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,m}(\mathbb{K})$: ${}^t(AB) = {}^tB^tA$.

0.3 Espace vectoriel des matrices à n lignes et m colonnes

Théorème 0.3.1. $\mathcal{M}_{n,m}(\mathbb{K})$ muni de l'addition et de la multiplication par un scalaire un \mathbb{K} -espace vectoriel.

Soit $(i,j) \in \{1,\ldots,n\} \times \{1,\ldots,m\}$ et E_{ij} la matrice de $\mathcal{M}_{n,m}(\mathbb{K})$ dont tous ses coefficients sont nuls sauf celui qui se trouve sur la i-ième ligne et la j-ième colonne qui est égal à 1 i. e

$$E_{ij} = i \longrightarrow \begin{pmatrix} 0 & \cdots & 0 & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & 1 & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{pmatrix}$$

On vérifie que, pour toute matrice $M = (a_{ij})$, on a

$$M = \sum_{i,j} a_{i,j} E_{ij}$$

et que $\{E_{ij}: 1 \le i \le n, 1 \le j \le m\}$ est libre, alors elle est une base de $\mathcal{M}_{n,m}(\mathbb{K})$, donc on a le théorème suivant :

Théorème 0.3.2. (*Dimension de* $\mathcal{M}_{n,m}(\mathbb{K})$) *La dimension de* $\mathcal{M}_{n,m}(\mathbb{K})$ *est égale* à nm.

Remarque 0.3.1. L'ensemble $\{E_{ij}: 1 \le i \le n, 1 \le j \le m\}$ est appelé la base canonique de $\mathcal{M}_{n,m}(\mathbb{K})$.

0.4 Matrices carrées

0.4.1 Déterminant d'une matrice carrées

Soit $A=(a_{ij})\in\mathcal{M}_n(\mathbb{K})$. On note $A_{i,j}^*$ la sous-matrice de A d'ordre n-1 obtenue en enlevant à A

sa *i*-ème ligne et sa *j*-ème colonne. Par exemple si $A = \begin{pmatrix} -1 & 2 & 0 \\ 11 & -5 & 2 \\ 6 & 0 & 1 \end{pmatrix}$, alors

$$A_{1,1}^* \begin{pmatrix} -5 & 2 \\ 0 & 1 \end{pmatrix}$$
, $A_{2,2}^* \begin{pmatrix} -1 & 0 \\ 6 & 1 \end{pmatrix}$ et $A_{3,2}^* \begin{pmatrix} -1 & 0 \\ 11 & 2 \end{pmatrix}$.

Définition 0.4.1. (*Déterminant*) Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$. On appelle déterminant de A et on note $\det(A)$ ou |A| l'élément de \mathbb{K} défini par une des formules de récurrence suivantes :

- (i) $si \ n = 1$, on $pose \det(A) = a_{1,1}$.
- (ii) si n > 1, on pose

$$\det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det(A_{1j}^*).$$

Exemple 0.4.1. 1. On a

$$\det\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \sum_{j=1}^{2} (-1)^{j+1} a_{1j} \det(A_{1j}^*) = a_{11} \det(A_{11}^*) + a_{12} \det(A_{12}^*) = a_{11} a_{22} - a_{12} a_{21}.$$

En particulier, si
$$A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$$
, alors

$$\det A = 2 \times 3 - (-1) \times 1 = 7.$$

2. On a

$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \sum_{j=1}^{3} (-1)^{j+1} a_{1j} \det(A_{1j}^{*})$$

$$= a_{11} \det(A_{11}^{*}) + a_{12} \det(A_{12}^{*}) + a_{13} \det(A_{13}^{*})$$

$$= a_{11} \det \begin{pmatrix} a_{22} & a_{23} \\ a_{31} & a_{33} \end{pmatrix} - a_{12} \det \begin{pmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix} + a_{13} \det \begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}.$$

En particulier, si
$$A = \begin{pmatrix} 5 & 1 & 1 \\ -1 & 2 & 1 \\ 3 & 0 & -2 \end{pmatrix}$$
, alors

$$\det A = 5 \times \det \begin{pmatrix} 2 & 1 \\ 0 & -2 \end{pmatrix} - \det \begin{pmatrix} -1 & 1 \\ 3 & -2 \end{pmatrix} + \det \begin{pmatrix} -1 & 2 \\ 3 & 0 \end{pmatrix}$$
$$= 5 \times (2 \times (-2) - 1 \times 0) - ((-1) \times (-2) - 1 \times 3) + (-1) \times 0 - 2 \times 3 = -25$$

Théorème 0.4.1. 1. Si tous les éléments d'une ligne (ou colonne) d'un matrice A sont nuls alors det(A) = 0.

- **2.** Si deux lignes (ou deux colonnes) d'un déterminant sont proportionnelles (ou identiques) alors il est nuls.
- 3. Si l'on permute deux lignes (ou deux colonnes) d'un déterminant, le signe du déterminant est changé.
- **4.** Si chaque élément d'une ligne (ou colonne) est multiplié par un scalaire k, le déterminant est multiplié par k.
- 5. Si aux éléments d'une ligne (ou colonne) on ajoute fois les éléments correspondants d'une autre ligne (ou colonne), la valeur du déterminant reste inchangée.

1. On a Exemple 0.4.2.

$$\det\begin{pmatrix} -1 & 1 & -1 & 7\\ 1 & 1 & -2 & 1\\ 2 & 1 & 3 & 1\\ 0 & 0 & 0 & 0 \end{pmatrix} = 0,$$

car tous les éléments de la ligne 4 sont nuls.

2. *On a*

$$\det\begin{pmatrix} -2 & 5 & 4\\ 1 & -1 & -2\\ 0 & 2 & 0 \end{pmatrix} = 0,$$

 $car C_3 = -2C_1$.

3. On a On a

$$\det\begin{pmatrix} -1 & 2 & 1 \\ 1 & 8 & -3 \\ 2 & 1 & 0 \end{pmatrix} = -\det\begin{pmatrix} 2 & 1 & 0 \\ 1 & 8 & -3 \\ -1 & 2 & 1 \end{pmatrix} = \det\begin{pmatrix} 1 & 2 & 0 \\ 8 & 1 & -3 \\ 2 & -1 & 1 \end{pmatrix}.$$

4. On a

$$\det\begin{pmatrix} 1 & 2 & 0 \\ -1 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} = \det\begin{pmatrix} 1 & 2 & 0 \\ -1+1 & 1+2 & 1+0 \\ 2-2\times1 & 1-2\times2 & 1-2\times0 \end{pmatrix}$$
$$= \det\begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 1 \\ 0 & 5 & 1 \end{pmatrix} = 3\times1-1\times5 = -2.$$

Théorème 0.4.2. (Déterminant et les opérations matricielles) Soit $A, B \in \mathcal{M}_n(\mathbb{K})$. On a

- **1.** $det(A) = det({}^{t}A)$.
- 2. det(AB) = det(A) det(B).
- 3. $det(\lambda A) = \lambda^n det(A)$.
- 4. A est inversible si et seulement si det(A) ≠ 0.
 5. Si A est inversible, alors det(A⁻¹) = 1/det(A).

Exemple 0.4.3. Si A et B deux matrices de taille 3 telles que det(A) = -2 et det(B) = 5. On a

$$\det({}^{t}A) = -2$$
, $\det(AB) = -2 \times 5 = -10$, $\det(B^{-1}) = \frac{1}{5}$, $\det(B^{2}) = 5^{2} = 25$, $\det(2A) = 2^{3} \times -2 = -16$.

0.4.2Matrice inversible

Définition 0.4.2. (Matrice identité) La matrice carrée

$$I_n := egin{pmatrix} 1 & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & 1 \end{pmatrix}$$

s'appelle la matrice identité.

Théorème 0.4.3. *Soit* $A \in \mathcal{M}_{n,m}(\mathbb{K})$ *, alors*

$$I_n A = A$$
 et $AI_m = A$.

Définition 0.4.3. (Matrice inversible - inverse) Soit $A \in \mathcal{M}_n(\mathbb{K})$. On dit que A est inversible s'il existe une matrice $B \in \mathcal{M}_n(\mathbb{K})$ pour laquelle :

$$AB = BA = I_n$$
.

La matrice B s'appelle matrice inverse de A et se note A^{-1} .

emple 0.4.4. 1. La matrice I_n est inversible et son inverse est I_n , car $I_n^2 = I_n$. **2.** La matrice $\begin{pmatrix} 2 & -1 \\ 5 & -3 \end{pmatrix}$ est inversible et son inverse est la matrice $\begin{pmatrix} 3 & -1 \\ 5 & -2 \end{pmatrix}$, car

$$\begin{pmatrix} 2 & -1 \\ 5 & -3 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ 5 & -2 \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ 5 & -2 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 5 & -3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

3. La matrice $\begin{pmatrix} \sqrt{2} & 1 - \sqrt{2} & 1 \\ -1 & 0 & -1 \\ -3 & 0 & \sqrt{2} \end{pmatrix}$ est inversible et son inverse est la matrice

$$\frac{1}{7} \begin{pmatrix}
0 & 2 - 3\sqrt{2} & -3 + \sqrt{2} \\
-7 - 7\sqrt{2} & -5 - 10\sqrt{2} & -3 - \sqrt{2} \\
0 & -9 + 3\sqrt{2} & 3 - \sqrt{2}
\end{pmatrix}, car$$

$$\frac{1}{7} \begin{pmatrix} \sqrt{2} & 1 - \sqrt{2} & 1 \\ -1 & 0 & -1 \\ -3 & 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} 0 & 2 - 3\sqrt{2} & -3 + \sqrt{2} \\ -7 - 7\sqrt{2} & -5 - 10\sqrt{2} & -3 - \sqrt{2} \\ 0 & -9 + 3\sqrt{2} & 3 - \sqrt{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

et $\frac{1}{7} \begin{pmatrix} 0 & 2 - 3\sqrt{2} & -3 + \sqrt{2} \\ -7 - 7\sqrt{2} & -5 - 10\sqrt{2} & -3 - \sqrt{2} \\ 0 & -9 + 3\sqrt{2} & 3 - \sqrt{2} \end{pmatrix} \begin{pmatrix} \sqrt{2} & 1 - \sqrt{2} & 1 \\ -1 & 0 & -1 \\ -3 & 0 & \sqrt{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

4. La matrice $\begin{pmatrix} 1+i & -1 \\ 2i & -i \end{pmatrix}$ est inversible et son inverse est la matrice $\begin{pmatrix} -\frac{1+i}{2} & \frac{1-i}{2} \\ -1-i & 1 \end{pmatrix}$, car

$$\begin{pmatrix} 1+i & -1 \\ 2i & -i \end{pmatrix} \begin{pmatrix} -\frac{1+i}{2} & \frac{1-i}{2} \\ -1-i & 1 \end{pmatrix} = \begin{pmatrix} -\frac{1+i}{2} & \frac{1-i}{2} \\ -1-i & 1 \end{pmatrix} \begin{pmatrix} 1+i & -1 \\ 2i & -i \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Définition 0.4.4. (*Opérations élémentaires sur une matrice*) On appelle opérations élémentaires sur une matrice A :

- (a) La transposition de deux lignes (resp. de deux colonnes) de A.
- **(b)** L'addition à une ligne (resp. colonne) r d'une autre ligne (resp. colonne) s, avec $s \neq r$, multipliée par un facteur $\lambda \in \mathbb{K}$.
- (c) Le produit par un facteur $\lambda \in \mathbb{K} \{0\}$ d'une ligne (resp. colonne) de A.

Pour calculer l'inverse d'une matrice A d'ordre n, dont on sait qu'elle est inversible, on procède de la façon suivante :

- 1. On considère la matrice E de taille $n \times 2n$, dont les n premières colonnes sont celles de A et les n dernières colonnes sont celles de I_n .
- **2.** On applique à E des transformations élémentaires sur lignes de sorte que les n premières colonnes de E se transforment en I_n , dès lors les n dernières colonnes de la matrice transformée forment la matrice inverse de A.

Exemple 0.4.5. 1. Calculons l'inverse de la matrice $\begin{pmatrix} 0 & 11 \\ -2 & 3 \end{pmatrix}$. Pour cela

$$\begin{pmatrix} 0 & 11 & 1 & 0 \\ -2 & 3 & 0 & 1 \end{pmatrix}$$

$$L_1 \longleftrightarrow L_2 \qquad \begin{pmatrix} -2 & 3 & 0 & 1 \\ 0 & 11 & 1 & 0 \end{pmatrix}$$

$$L_1 \longleftrightarrow -\frac{1}{2}L_1 \qquad \begin{pmatrix} 1 & -\frac{3}{2} & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{1}{11} & 0 \end{pmatrix}$$

$$L_2 \longleftrightarrow \frac{1}{11}L_2 \qquad \begin{pmatrix} 1 & 0 & \frac{3}{22} & -\frac{1}{2} \\ 0 & 1 & \frac{1}{11} & 0 \end{pmatrix}$$

$$L_1 \longleftrightarrow L_1 + \frac{3}{2}L_2 \qquad \begin{pmatrix} 1 & 0 & \frac{3}{22} & -\frac{1}{2} \\ 0 & 1 & \frac{1}{11} & 0 \end{pmatrix}$$

d'où

$$\begin{pmatrix} 0 & 11 \\ -2 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{3}{22} & -\frac{1}{2} \\ \frac{1}{11} & 0 \end{pmatrix}.$$

2. Calculons l'inverse de la matrice $\begin{pmatrix} 1 & 3 & 0 \\ -2 & 2 & 7 \\ 0 & -6 & -5 \end{pmatrix}$. Pour cela

$$\begin{pmatrix} 1 & 3 & 0 & | & 1 & 0 & 0 \\ -2 & 2 & 7 & | & 0 & 1 & 0 \\ 0 & -6 & -5 & | & 0 & 0 & 1 \end{pmatrix}$$

$$L_1 \longrightarrow L_2 + 2L_1 \qquad \begin{pmatrix} 1 & 3 & 0 & | & 1 & 0 & 0 \\ 0 & 8 & 7 & | & 2 & 1 & 0 \\ 0 & -6 & -5 & | & 0 & 0 & 1 \end{pmatrix}$$

$$L_2 \longrightarrow L_2 + L_3 \qquad \begin{pmatrix} 1 & 3 & 0 & | & 1 & 0 & 0 \\ 0 & 2 & 2 & | & 2 & 1 & 1 \\ 0 & -6 & -5 & | & 0 & 0 & 1 \end{pmatrix}$$

$$L_2 \longleftrightarrow -\frac{1}{2}L_2 \qquad \begin{pmatrix} 1 & 3 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 1 & \frac{1}{2} & \frac{1}{2} \\ 0 & -6 & -5 & | & 0 & 0 & 1 \end{pmatrix}$$

$$L_1 \longrightarrow L_1 - 3L_2 \qquad \begin{pmatrix} 1 & 0 & -3 & | & -2 & -\frac{3}{2} & -\frac{3}{2} \\ 0 & 1 & 1 & | & 1 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & | & 6 & 3 & 4 \end{pmatrix}$$

$$L_1 \longrightarrow L_1 + 3L_3 \qquad \begin{pmatrix} 1 & 0 & 0 & | & 16 & \frac{15}{2} & \frac{21}{2} \\ 0 & 1 & 0 & | & -5 & -\frac{5}{2} & -\frac{7}{2} \\ 0 & 0 & 1 & | & 6 & 3 & 4 \end{pmatrix}$$

donc

$$\begin{pmatrix} 1 & 3 & 0 \\ -2 & 2 & 7 \\ 0 & -6 & -5 \end{pmatrix}^{-1} = \begin{pmatrix} 16 & \frac{15}{2} & \frac{21}{2} \\ -5 & -\frac{5}{2} & -\frac{7}{2} \\ 6 & 3 & 4 \end{pmatrix}.$$

Théorème 0.4.4. L'inversion d'une matrice possède les propriétés suivantes

- 1. Si A est inversible, alors son inverse est unique.
- **2.** Si A est inversible, alors A^{-1} est aussi inversible et on a

$$\left(A^{-1}\right)^{-1} = A.$$

3. Si A et B deux matrice inversibles de même taille, alors AB est inversible et on a

$$(AB)^{-1} = B^{-1}A^{-1}.$$

- **4.** Si A est inversible, alors pour tout $k \in \mathbb{Z}$, A^k est inversible et on a $(A^k)^{-1} = (A^{-1})^k$.
- **5.** Si A est inversible, alors ${}^{t}A$ est inversible et on a $({}^{t}A)^{-1} = {}^{t}(A^{-1})$.

Définition 0.4.5. (Groupe linéaire) On appelle groupe linéaire de degré n sur \mathbb{K} , noté $GL_n(\mathbb{K})$, le groupe des éléments inversibles de $\mathcal{M}_n(\mathbb{K})$.

Théorème 0.4.5. (Structure d'anneau de $\mathcal{M}_n(\mathbb{K})$) ($\mathcal{M}_n(\mathbb{K})$, +, \times) est un anneau. L'élément neutre pour la multiplication est la matrice identité I_n . Pour n > 1, l'anneau $\mathcal{M}_n(\mathbb{K})$ est non commutatif et non intègre.

En terme de déterminant, on peut tester si une matrice carrée est inversible, et si c'est oui, on peut calculer son inverse.

Le résultat suivant permet de tester l'inversibilité d'une matrice carrée :

Théorème 0.4.6. (Critère d'inversibilité d'une matrice) Une matrice A est inversible si et seulement si $det(A) \neq 0$.

Exemple 0.4.6. 1. La matrice
$$\begin{pmatrix} -6 & 11 \\ 2 & -4 \end{pmatrix}$$
 est inversible car $\begin{vmatrix} -6 & 11 \\ 2 & -4 \end{vmatrix} = 2 \neq 0$.
2. Le fait que $\begin{vmatrix} 7 & 3 & -2 \\ 13 & 5 & 1 \\ -12 & 10 & 1 \end{vmatrix} = 0$ implique la matrice $\begin{pmatrix} 7 & 3 & -2 \\ 13 & 5 & 1 \\ -12 & 10 & 1 \end{pmatrix}$ n'est pas inversible.

Pour le calcul de l'inverse d'une matrice carré inversible, nous avons besoin de la définition suivante :

Définition 0.4.6. (Comatrice d'une matrice) Soit $A = (a_{ij})$ une matrice carrée d'ordre n. On appelle cofacteur associé à a_{ij} le nombre $(-1)^{i+j} \det(A_{i,j}^*)$. La comatrice de A, noté $\operatorname{com}(A)$, est la matrice carrée d'ordre n dont les coefficients sont les cofacteurs.

Exemple 0.4.7. 1. La comatrice de la matrice $A = \begin{pmatrix} -1 & 7 \\ 2 & 1 \end{pmatrix}$ est

$$com(A) = \begin{pmatrix} 1 & 2 \\ -7 & 1 \end{pmatrix}.$$

2. La comatrice de la matrice $B = \begin{pmatrix} 5 & 0 & -3 \\ 1 & -1 & 4 \\ 0 & -1 & 1 \end{pmatrix}$ est

$$com(B) = \begin{pmatrix} \begin{vmatrix} -1 & 4 \\ -1 & 1 \end{vmatrix} & - \begin{vmatrix} 1 & 4 \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 1 & -1 \\ 0 & -1 \end{vmatrix} \\ - \begin{vmatrix} 0 & -3 \\ -1 & 1 \end{vmatrix} & \begin{vmatrix} 5 & -3 \\ 0 & 1 \end{vmatrix} & - \begin{vmatrix} 5 & 0 \\ 0 & -1 \end{vmatrix} \\ \begin{vmatrix} 0 & -3 \\ -1 & 4 \end{vmatrix} & - \begin{vmatrix} 5 & -3 \\ 1 & 4 \end{vmatrix} & \begin{vmatrix} 5 & 0 \\ 1 & -1 \end{vmatrix} \end{pmatrix} = \begin{pmatrix} 3 & -1 & -1 \\ 3 & 5 & 5 \\ -3 & -23 & -5 \end{pmatrix}.$$

Avec les notations ci-dessus, on peut énoncer le résultat concernant le calcul de la matrice inverse d'une matrice inversible :

Théorème 0.4.7. *Si A est une matrice inversible, alors*

$$A^{-1} = \frac{1}{\det(A)} t \operatorname{com}(A)$$

Exemple 0.4.8. 1. Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice inversible (i. e ad $-bc \neq 0$). Dans ce cas,

$$com(A) = \begin{pmatrix} d & -c \\ -b & a \end{pmatrix},$$

et par suite

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

2. Soit

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & -2 & 4 \\ 3 & -1 & -3 \end{pmatrix}.$$

La matrice A est inversible, puisque $\det(A) = 14 \neq 0$. La comatrice de A est :

$$com(A) = \begin{pmatrix} \begin{vmatrix} -2 & 4 \\ -1 & -3 \end{vmatrix} & -\begin{vmatrix} 2 & 4 \\ 3 & -3 \end{vmatrix} & \begin{vmatrix} 2 & -2 \\ 3 & -1 \end{vmatrix} \\ -\begin{vmatrix} 0 & 1 \\ -1 & -3 \end{vmatrix} & \begin{vmatrix} 1 & 1 \\ 3 & -3 \end{vmatrix} & -\begin{vmatrix} 1 & 0 \\ 3 & -1 \end{vmatrix} \\ \begin{vmatrix} 0 & 1 \\ -2 & 4 \end{vmatrix} & -\begin{vmatrix} 1 & 1 \\ 2 & 4 \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ 2 & -2 \end{vmatrix} \end{pmatrix} = \begin{pmatrix} 10 & 18 & 4 \\ -1 & -6 & 1 \\ 2 & -2 & -2 \end{pmatrix}.$$

Par conséquent :

$$A^{-1} = \frac{1}{14} \begin{pmatrix} 10 & 18 & 4 \\ -1 & -6 & 1 \\ 2 & -2 & -2 \end{pmatrix} = \begin{pmatrix} \frac{5}{7} & -\frac{1}{14} & \frac{1}{7} \\ \frac{9}{7} & -\frac{3}{7} & -\frac{1}{7} \\ \frac{2}{7} & \frac{1}{14} & -\frac{1}{7} \end{pmatrix}.$$

Théorème 0.4.8. Soient E et F deux \mathbb{K} -espaces vectoriels de même dimension de bases respectives B_1 et B_2 . Soient $f \in \mathcal{L}(E,F)$. Alors f est bijective S et seulement S inversible et dans ce S cas:

$$(M_{B_1,B_2}(f))^{-1} = M_{B_1,B_2}(f^{-1}).$$

Exemple 0.4.9. 1. Considérons l'application linéaire :

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto (x+y,2x-y).$

La matrice associée à f dans la base canonique de \mathbb{R}^2 est

$$A = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}.$$

Puisque $\det A = -3 \neq 0$, alors A est inversible. L'application f est donc bijective et la matrice $\begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}^{-1} = -\frac{1}{3} \begin{pmatrix} -1 & -2 \\ -1 & 1 \end{pmatrix}$ est la matrice associée à l'application f^{-1} .

2. Soit g l'application.

$$g: \mathbb{R}_2[X] \longrightarrow \mathbb{R}_2[X]$$

$$P \longmapsto X^2 P'' + 1$$

La matrice associée à g dans la base canonique de $\mathbb{R}_2[X]$ est

$$B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Comme $\det B = 0$, alors A n'est pas inversible et par suite l'application g n'est pas bijective.

0.5 Rang d'une matrice

Définition 0.5.1. (Rang d'une matrice) Soit $A \in \mathcal{M}_{n,m}(\mathbb{K})$ une matrice. Le rang de la matrice A, noté $\operatorname{rg} A$, est la dimension de sous-espace vectoriel de \mathbb{K}^n engendré par ses vecteurs colonnes.

Exemple 0.5.1. 1. Considérons la matrice suivante :

$$A := \begin{pmatrix} -2 & 5 & 1 \\ 1 & 1 & 1 \\ 0 & -2 & 1 \end{pmatrix}.$$

Puisque

$$\begin{cases}
-2\alpha + 5\beta + \gamma = 0 \\
\alpha + \beta + \gamma = 0 \\
-2\beta + \gamma = 0
\end{cases} \iff (\alpha, \beta, \gamma) = (0, 0, 0),$$

alors dim Vect $\{(-2,1,0),(5,1,-2),(1,1,1)\} = 3$. Par suite rg(A) = 3.

2. Considérons la matrice suivante :

$$B := \begin{pmatrix} 2 & -4 & 0 \\ 0 & 5 & 5 \\ -1 & 1 & -1 \\ 3 & -1 & 5 \end{pmatrix}.$$

Le fait que

$$\begin{cases} 2\alpha - 4\beta = 0 \\ 5\beta + 5\gamma = 0 \\ -\alpha + \beta - \gamma = 0 \\ 3\alpha - \beta + 5\gamma = 0 \end{cases} \iff (\alpha, \beta, \gamma) = (2\beta, \beta, -\beta), \ (\beta \in \mathbb{R}),$$

implique dim Vect $\{(2,0,-1,3),(-4,5,1,-1),(0,5,-1,5)\} \le 2$. Comme la famille $\{(2,0,-1,3),(-4,5,1,-1)\}$ est libre, alors

dim Vect
$$\{(2,0,-1,3),(-4,5,1,-1),(0,5,-1,5)\}=2.$$

D'où, rg(B) = 2.

Observons que la connaissance du rang fournit le critère d'inversibilité suivant :

Théorème 0.5.1. (Critère d'inversibilité) Une matrice de $\mathcal{M}_n(\mathbb{K})$ est inversible si et seulement si son rang est n.

Exemple 0.5.2. 1. Puisque

$$\operatorname{rg}\left(\begin{pmatrix} -2 & 5 & 1\\ 1 & 1 & 1\\ 0 & -2 & 1 \end{pmatrix}\right) = 3,$$

alors A est inversible.

2. Comme

$$\begin{vmatrix} 1 & -2 & 0 & 1 \\ 3 & -1 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ -1 & 0 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 0 & 1 \\ 0 & -1 & 4 & 4 \\ 0 & 1 & 2 & 1 \\ 0 & -2 & 1 & 2 \end{vmatrix} = \begin{vmatrix} -1 & 4 & 4 \\ 0 & 2 & 1 \\ -2 & 1 & 2 \end{vmatrix} = \begin{vmatrix} -1 & 4 & 4 \\ 0 & 6 & 5 \\ 0 & -7 & -6 \end{vmatrix} = 1 \neq 0$$

donc

$$\operatorname{rg}\left(\begin{pmatrix}1 & -2 & 0 & 1\\ 3 & -1 & 1 & 1\\ 0 & 1 & 2 & 1\\ -1 & 0 & 1 & 1\end{pmatrix}\right) = 4.$$

Théorème 0.5.2. *Une matrice et sa transposée ont même rang. Donc, le rang d'une matrice est le nombre maximal de vecteurs lignes (ou colonnes) linéairement indépendants.*

Théorème 0.5.3. (Méthode de calcul du rang d'une matrice) Les opérations élémentaires transforment une matrice A en une matrice A' de même rang que A.

Exemple 0.5.3. 1. *On a*

$$\operatorname{rg}\begin{pmatrix} 1 & 1 & 0 \\ -2 & 0 & 2 \\ 1 & 2 & 3 \end{pmatrix} = \operatorname{rg}\begin{pmatrix} 0 & 1 & 0 \\ -2 & 0 & 2 \\ -1 & 2 & 3 \end{pmatrix} \quad C_1 \longrightarrow C_1 - C_2$$

$$= \operatorname{rg}\begin{pmatrix} 0 & 1 & 0 \\ -2 & 0 & 0 \\ -1 & 2 & 2 \end{pmatrix} \quad C_3 \longrightarrow C_3 + C_1$$

$$= \operatorname{rg}\begin{pmatrix} 0 & 1 & 0 \\ -2 & 0 & 0 \\ 0 & 2 & 2 \end{pmatrix} \quad L_3 \longrightarrow L_3 - \frac{1}{2}L_2$$

$$= \operatorname{rg}\begin{pmatrix} 0 & 1 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} \quad L_3 \longrightarrow L_3 - 2L_1$$

$$= \operatorname{rg}\begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \quad C_1 \longleftrightarrow C_2$$

$$= 3$$

2. On a

$$\operatorname{rg}\begin{pmatrix} 1 & 1 & 0 & 1 \\ 2 & 1 & 1 & 0 \\ 1 & 2 & -1 & 1 \\ -1 & 0 & -1 & -3 \end{pmatrix} = \operatorname{rg}\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & -1 & 1 & -2 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & -2 \end{pmatrix} \qquad \begin{array}{l} L_2 \longrightarrow L_2 - 2L_1 \\ L_3 \longrightarrow L_3 - L_1 \\ L_4 \longrightarrow L_4 + L_1 \end{array}$$

$$= \operatorname{rg}\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & -1 & 1 & -2 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & -4 \end{pmatrix} \qquad \begin{array}{l} L_3 \longrightarrow L_3 + L_2 \\ L_4 \longrightarrow L_4 + L_2 \end{pmatrix}$$

$$= \operatorname{rg}\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -1 & -2 & 1 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & -4 & 0 \end{pmatrix} \qquad C_3 \longleftrightarrow C_4$$

$$= \operatorname{rg}\begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -1 & -2 & 1 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \qquad L_4 \longrightarrow L_4 - 2L_3$$

$$= 3.$$

Théorème 0.5.4. Soient E et F deux \mathbb{K} -espaces vectoriels de dimensions finies non nulles m et n respectivement. Soient $\mathcal{U} = \{u_1, \dots, u_m\}$ une base de E et $\mathbb{V} = \{v_1 \dots v_n\}$ une base de F.

(1) Soit (x_1, \dots, x_n) un système de n vecteurs de E et $M = M_{\mathcal{U}}(x_1, \dots, x_n)$. Alors

$$rg(M) = rg(x_1, \dots, x_n) = \dim Vect(x_1, \dots, x_n).$$

(2) Soit $f \in \mathcal{L}(E, F)$ et $M = mat(f, \mathcal{U}, \mathcal{V})$. Alors

$$rg(f) = M$$
.