Corrigé de la Série de TD $N^{\circ}03$

Corrigé Questions :

Transformation algébrique	Lois utilisées	
\overline{A} . $B + A$. $B = B$. $\overline{A} + B$. A	Commutativité de « . »	
$B.\overline{A} + B.A = B.(\overline{A} + A)$	Distributivité de « . » par	
B.A + B.A = B.(A + A)	rapport à « + »	
$B.(\overline{A} + A) = B.1$	Complémentarité de	
B.(A+A)=B.1	« + »	
B. 1 = B	Elément neutre de « . »	

Transformation algébrique	Lois utilisées
$(A \oplus B) \cdot B + A \cdot B =$	Définition du ⊕
$(\overline{A}.B + A.\overline{B}).B + A.B$	(ou exclusif)
$=B.(B.\overline{A}+\overline{B}.A)+A.B$	Commutativité de « . »
$= B.(B.\overline{A}) + B.(\overline{B}.A) + A.B$	Distributivité de « . »
-B.(B.A) + B.(B.A) + A.B	par rapport à « + »
$= (B.B).\overline{A} + (B.\overline{B}).A + A.B$	Associativité de « . »
$=B.\overline{A}+(B.\overline{B}).A+A.B$	Idempotence de « . »
$=B.\overline{A}+0.A+A.B$	Complémentarité
$=B.\overline{A}+0+A.B$	Absorption
$=B.\overline{A}+A.B$	Elément neutre de « + »
$= B.(\overline{A} + A)$	Distributivité de « . »
-B.(A+A)	par rapport à « + »
= B. 1	Complémentarité
= B	Elément neutre de « . »

Transformation algébrique	Lois utilisées	
$x + (\overline{x}. y) = (x + \overline{x}). (x + y)$	Distributivité de « + »	
(x + (x, y) = (x + x), (x + y)	par rapport à « . »	
$= 1.\left(x + y\right)$	Complémentarité de	
	« + »	
= x + y	Elément neutre de « . »	

Corrié exercice1

Soient x et y deux variables booléennes $(x,y) \in V^2$ où $V=\{0,1\}$

1 - On définit l'opérateur ⊕ de la manière suivante :

 $x \oplus y = 1$ si et seulement si $x \ne y$, Montrez, à l'aide d'une table de vérité que :

$$x \oplus y = \overline{x}. y + x. \overline{y}$$

2- On définit l'opérateur $\bar{\theta}$ de la manière suivante :

 $x\overline{\mathcal{D}}y = 1$ si et seulement si x=y, Montrez, à l'aide d'une table de vérité que :

$$x \overline{\theta} y = \overline{x \oplus y}$$

Ré	Réponse : 1-								
X	У	\overline{x}	\overline{y}	\overline{x} . y	$x. \overline{y}$	$\overline{x}. y + x. \overline{y}$	$x \oplus y$		
0	0	1	0	0	0	0	0		
0	1	1	0	1	0	1	1		
1	0	0	1	0	1	1	1		
1	1	0	1	0	0	0	0		
						\bigcup	\vee		

			_		Égali	ité
Ré	pon	se :	2-			
x	У	\overline{x}	\overline{y}	$x \oplus y$	$\overline{x \oplus y}$	$x \overline{\oplus} y$
0	0	1	0	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	1	0	1	1
						1
	_					
	V	aleui	rs tr	ouvées	par défin	nition :
	X	⊕̃y	= 1 s	i et seul	ement si	x=y
	_					

Corrigé exercice2:

Appliquez cette loi sur 2 variables x₂ et x₁.

$$\frac{\overline{x_2.x_1} = \overline{x_2} + \overline{x_1}}{\overline{x_2} + \overline{x_1}} = \overline{x_2}.\overline{x_1}$$

• Appliquez cette loi sur 3 variables x3, x2 et x1.

$$\frac{\overline{x_3}.\overline{x_2}.\overline{x_1}}{\overline{x_3}+\overline{x_2}+\overline{x_1}} = \frac{\overline{x_3}+\overline{x_2}+\overline{x_1}}{\overline{x_3}.\overline{x_2}.\overline{x_1}}$$

Appliquez cette loi sur n variables xn, ..., x2, x1.

$$\frac{\overline{x_{n-1}...x_2.x_1} = \overline{x_n} + \overline{x_2} + \overline{x_1}}{\overline{x_{n-1}} + ...x_2 + \overline{x_1}} = \overline{x_n}.\overline{x_2}....\overline{x_1}$$

X ₂	X ₂	$x_2. x_1$	\overline{x}_2	. x ₁		$\overline{x_2}$	$\overline{x_1}$	$\overline{x_2}$	$+\bar{x}$	1
0	0	0		/1 \		1	1		<u>/1</u> \	
0	1	0		1		1	0		1	
1	0	0		1		0	1		1	
1	1	1		0		0	0		0	
	Egalité									

Corrigé Exercice 3 : Corrigé A- Ce qui donne la table de vérité suivante :

$$f_1(x, y, z) = x.y.(z + \overline{z}) + x.\overline{y}.(z + \overline{z}) + (x + \overline{x}).y.z$$

$$f_1(x, y, z) = x. y. z + x. y. \overline{z} + x. \overline{y}. z + x. \overline{y}. \overline{z} + x. y. z + \overline{x}. y. z$$

$$f_1(x, y, z) = m_7 + m_6 + m_5 + m_4 + m_7 + m_3$$

$$f_1(x, y, z) = m_3 + m_4 + m_5 + m_6 + m_7$$

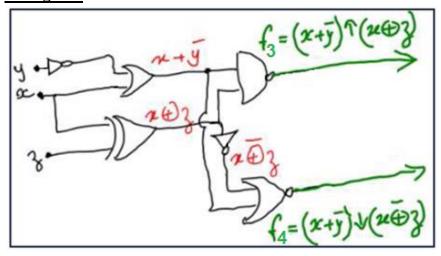
mintermes	х, у, z	$f_1(x,y,z)$
\mathbf{m}_0	000	0
m ₁	001	0
m ₂	010	0
m ₃	011	1
m 4	100	1
m 5	101	1
m 6	110	1
m ₇	111	1

Corrigé B :

NAND:
$$x \uparrow y = \overline{x.y}$$

 $f_{\underline{z}}(x, y, z) = x. \underline{y + y. \overline{z}}$
 $= \overline{x. y + y. \overline{z}} = \overline{x. y. \overline{y. \overline{z. \overline{z}}}}$
 $= (x \uparrow y) \uparrow (y \uparrow (z \uparrow z))$
NOR: $x \downarrow y = \overline{x + y}$
 $f_{\underline{z}}(x, y, z) = x. \underline{y + y. \overline{z}}$
 $= \underline{y. (x + \overline{z})} = \overline{y. (x + \overline{z})}$
 $= \overline{y + y} + \overline{(x + \overline{z + z})}$
 $= (y \downarrow y) \downarrow (x \downarrow (z \downarrow z))$

Corrigé C:



Corrigé D:

$$\overline{A + \overline{B} \cdot C} = \overline{A} \cdot \left(\overline{B} \cdot \overline{C} \right) \qquad \text{DeMorgan}$$

$$= \overline{A} \cdot \left(B + \overline{C} \right) \qquad \text{DeMorgan}$$

$$= \overline{A} \cdot B + \overline{A} \cdot \overline{C} \qquad \text{Distributivit\'e}$$

$$= \overline{A} \cdot B \cdot \left(1 \right) + \overline{A} \cdot \overline{C} \cdot \left(1 \right) \qquad \text{El\'ement neutre}$$

$$= \overline{A} \cdot B \cdot \left(C + \overline{C} \right) + \overline{A} \cdot \overline{C} \cdot \left(B + \overline{B} \right) \qquad \text{Compl\'ementarit\'e}$$

$$= \overline{A} \cdot B \cdot C + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot \overline{C} \cdot B + \overline{A} \cdot \overline{C} \cdot \overline{B} \qquad \text{Distributivit\'e}$$

$$= \overline{A} \cdot B \cdot C + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{C} \qquad \text{Commutativit\'e}$$

$$= \overline{A} \cdot B \cdot C + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot \overline{C} \qquad \text{Idempotence}$$

Corrigé E:

$$S_{2} = (A \oplus B) \oplus G_{in}$$

$$Cout = (A \oplus B) \cdot G_{in} + A \cdot B$$

$$S_{2} = (x \oplus (x \oplus 0)) \cdot ([(x \oplus 0) \oplus y] \oplus y)$$

Corrigé exercice 4:

1. Représentation Canonique

1.1. 2^{ème} forme

✓ **F** (**A**, **B**, **C**, **D**) =
$$(A + B + \overline{D})(\overline{A} + B + C)(\overline{A} + B + \overline{C})(\overline{A} + \overline{B} + D)$$

$$\checkmark \quad \mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) = (A + B + \overline{C}C + \overline{D})(\overline{A} + B + C + \overline{D}D)(\overline{A} + B + \overline{C} + \overline{D}D)(\overline{A} + \overline{B} + \overline{C}C + D)$$

$$\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) = (A + B + C + \overline{D}) * (A + B + \overline{C} + \overline{D}) * (\overline{A} + B + C + D) *$$

$$(\bar{A} + B + C + \bar{D}) * (\bar{A} + B + \bar{C} + D) * (\bar{A} + B + \bar{C} + \bar{D}) * (\bar{A} + \bar{B} + C + D) * (\bar{A} + \bar{B} + \bar{C} + D)$$

 \checkmark **F** (**A**, **B**, **C**, **D**)= $\Pi(1, 3, 8, 9, 10, 11, 12, 14)$

1.2. 1ère Forme

$$\checkmark$$
 F (**A**, **B**, **C**, **D**)= $\sum (0, 2, 4, 5, 6, 7, 13, 15)$

✓
$$\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}) = \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}C\overline{D} + \overline{A}B\overline{C}\overline{D} + \overline{A}B\overline{C}D + \overline{A}BCD + \overline{A}BCD + ABCD$$

2. Simplification

Méthode Algébrique

✓ **F** (**A**, **B**, **C**, **D**) =
$$(A + B + \overline{D})(\overline{A} + B + C)(\overline{A} + B + \overline{C})(\overline{A} + \overline{B} + D)$$

✓ **F** (**A**, **B**, **C**, **D**) =
$$(A + B + \overline{D})(\overline{A} + B)(\overline{A} + \overline{B} + D) = (A + B + \overline{D})(\overline{A} + B)(\overline{A} + D)$$

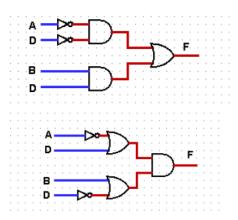
$$\checkmark$$
 F (**A**, **B**, **C**, **D**)= $(B + \overline{D})(\overline{A} + B)(\overline{A} + D) = (B + \overline{D})(\overline{A} + D)$

Méthode KARNAUGH

$$F(A, B, C, D) = (B + \overline{D})(\overline{A} + D)$$
 1.5 pt

$$F(A, B, C, D) = \overline{A}\overline{D} + BD$$

3. Le Circuit (Logigramme)



4.3. V en Fonction de NOR (↓)

$$V(A, B, C, D) = (B + \overline{D})(\overline{A} + D) = \overline{(B + \overline{D})(\overline{A} + D)} = \overline{(B + \overline{D})} + \overline{(\overline{A} + D)} = \overline{(B \downarrow \overline{D})} + \overline{(\overline{A} \downarrow D)} = \overline{(B \downarrow \overline{D})} + \overline{(\overline{A} \downarrow D)} = \overline{(B \downarrow \overline{D})} + \overline{(A \downarrow \overline{D})} + \overline{(A \downarrow \overline{D})} = \overline{(B \downarrow \overline{D}$$

4.4. V en Fonction de NAND (↑)

V(A, B, C, D)=
$$(B + \overline{D})(\overline{A} + D) = \overline{AB} + \overline{AD} + BD = \overline{AD} + BD = ...$$

V(A, B, C, D)= $((A \uparrow A) \uparrow (D \uparrow D)) \uparrow (B \uparrow D)$

Corrigé exercice 5

1. $F_1(A;B;C) = A. \overline{B}.C + A.B. \overline{C} + A.B.C$

Correction : La table de Karnaugh est présentée par la figure suivante :

	_			
A BC	BC	$\overline{B}C$	\overline{BC}	$B\overline{C}$
A	1	1	0	1
\overline{A}	0	0	0	0

Expression simplifiée : $F_1(A;B;C) = A.B + A.C.$

2. $F_2(A;B;C) = \overline{A}. \overline{B}. \overline{C} + A. \overline{B} + A.B.C$

Correction : La table de Karnaugh est présentée par la figure suivante :

A BC	ВС	$\overline{B}C$	$\overline{B}\overline{C}$	$B\overline{C}$
A	(1	1)	1	0
\overline{A}	0	0	1	0

Expression simplifiée : $F_2(A;B;C) = A.C + \overline{B}.\overline{C}$

(c) $F3(A;B;C) = \overline{A}.\overline{B} + \overline{A}.B.\overline{C} + \overline{B}.\overline{C} + A.\overline{B}.C$

Correction:

$$F_3(A;B;C) = \overline{A}. \overline{B} + \overline{A}.B. \overline{C} + \overline{B}. \overline{C} + A. \overline{B}.C =$$

$$= \overline{A}. \overline{B}.C + \overline{A}. \overline{B}. \overline{C} + \overline{A}.B. \overline{C} + \overline{A}.\overline{B}. \overline{C} + \overline{A}.\overline{B}. \overline{C} + \overline{A}.\overline{B}.\overline{C} + \overline{A}.\overline{B}.\overline{C}$$

La table de Karnaugh est la suivante.

A BC	ВС	$\overline{B}C$	\overline{BC}	$B\overline{C}$
A	0	1	1	0
\overline{A}	0	1	1	1)

Expression simplifiée : $F3(A;B;C) = \overline{B} + \overline{A}.\overline{C}$

(d)
$$F_4(A;B;C;D) = B.\overline{C}.\overline{D} + \overline{A}.B.\overline{D} + A.B.C.\overline{D}$$

= $A.B.\overline{C}.\overline{D} + \overline{A}.B.\overline{C}.\overline{D} + \overline{A}.B.C.\overline{D} + \overline{A}.B.\overline{C}.\overline{D} + A.B.\overline{C}.\overline{D} + A.B.C.\overline{D}$

La table de Karnaugh est présentée figure suivante

AB CD	CD	$\overline{C}D$	$\overline{C}\overline{D}$	$C\overline{D}$
AB	0	0	1	1
$\overline{A}B$	0	0	1	1
$\overline{A}\overline{B}$	0	0	0	0
$A\overline{B}$	0	0	0	0

Expression simplifiée : $F_4(A;B;C;D) = B.\overline{D}$

(e)
$$F5(A;B;C;D) = \overline{A} + A.B + A.\overline{B}.C + A.\overline{B}.C.D$$

Correction:

$$F5(A;B;C;D) = \overline{A}. \ B. \ C. \ D + \overline{A}. \ B. \ \overline{C}. \ \overline{D} + \overline{A}. \ B. \ \overline{C}. \ D + \overline{A}. \ B. \ \overline{C}. \ D + \overline{A}. \ \overline{B}. \ \overline{C}. \ D$$

La table de Karnaugh est présentée par la figure suivante:

AB CD	CD	$\overline{C}D$	$\overline{C}\overline{D}$	$C\overline{D}$
AB		1	1	
$\overline{A}B$	1	1	1	1
$\overline{A}\overline{B}$	1	1	1	1
$A\overline{B}$	1	0	0	1

Expression simplifiée : $F5(A;B;C;D) = B+\overline{A}+C$

(f)
$$F_6(A;B;C;D) = \overline{A}.\overline{B}.\overline{D} + \overline{A}.\overline{C}.\overline{D} + \overline{A}.B.C.\overline{D} + A.B.D + \overline{B}.C.D + A.\overline{B}.C.\overline{D}$$

Correction:

$$F6(A;B;C;D) = \overline{A}.\overline{B}.\overline{D}.C + \overline{A}.\overline{B}.\overline{D}.\overline{C} + \overline{A}.B.\overline{C}.\overline{D} + \overline{A}.\overline{B}.\overline{C}.\overline{D} + \overline{A}.B.C.\overline{D} + A.B.C.D + A.B.C.D + A.B.\overline{C}.D + A.B.C.D$$

La table de Karnaugh est présentée par la figure suivante

e par rajigure surrame				
AB CD	CD	$\overline{C}D$	$\overline{C}\overline{D}$	$C\overline{D}$
AB	1	1)	0	0
$\overline{A}B$	0	0	1	1
$\overline{A}\overline{B}$	0	0	1	1)
$A\overline{B}$	0	0	1	1

Expression simplifiée : $F_6(A;B;C;D) = \overline{A}.\overline{D} + A.B.D + \overline{B}.\overline{D}$

Corrigé d'exercices supplémentaires:

A) Commande de Lampes :

1. Définition des entrées- sorties :

On a:

Trois entrées a, b, c, et deux sorties R et S

2. Table de vérité :

С	b	a	R	S
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

3. Equations et simplifications :

R = c. b.a + c.b.a + c. b. a + c.b.a + c. b. a + c.b.a + c.b.a

ou bien : $\mathbf{R} = \mathbf{c} + \mathbf{b} + \mathbf{a}$

on utilisant la deuxième forme normale

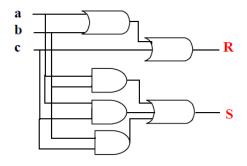
S=c.b.a+c.b.a+c.b.a+c.b.a

on utilisant la table de Karnaugh pour simplifier l'expression:

ba c	ba	ba	b a	bā
c	1	0	0	0
c	1	1	0	1

L'expression simplifiée : S = b.a + c.a + c.b

Le logigramme



B) Fonctionnement d'un pont :

1. Définition des entrées- sorties :

On a:

deux entrées x, y et deux sorties A et B

x=0 si $a+b \le 7$ tonnes

x=1 si a+b >= 7 tonnes

y=0 si a>b

y=1 si a<=b

2. Table de vérité:

X	y	A	В
0	0	1	1
0	1	1	1
1	0	0	1
1	1	1	0

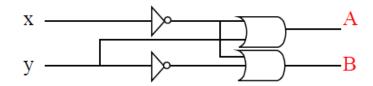
3. Equations et simplifications :

On utilisant la deuxième forme normale (puisqu'on n'en a qu'un seul max terme pour les deux sorties) :

A = x + y

B = x + y

Le logigramme



Corrigé Exercice sup:

1. Simplifier les expressions suivantes en utilisant les tables de karnaugh à 5 variables. $F(A, B, C, D, E) = \sum (0, 1, 2, 4, 8, 10, 12, 14, 16, 17, 18, 20, 24, 26, 27, 30, 31)$

$$F(A, B, C, D, E) = \sum (0, 1, 2, 4, 8, 10, 12, 14, 10, 17, 18, 20, 24, 20, 27, 30, 31)$$

$$= \overline{C}.\overline{E} + A.B.D + \overline{B}.\overline{D}.\overline{E} + \overline{B}.\overline{C}.\overline{D} + \overline{A}.B.\overline{E}$$

$$F(A, B, C, D, E) = \sum (0, 1, 4, 5, 8, 9, 10, 16, 17, 20, 21, 24, 26, 28, 29, 30, 31)$$

$$= \overline{B}.\overline{D} + \overline{A}.\overline{C}.\overline{D} + B.\overline{C}.\overline{E} + A.B.C$$

$$F(A, B, C, D, E) = \sum (0, 1, 2, 3, 4, 5, 8, 9, 10, 12, 14, 16, 17, 18, 19, 24, 25, 26, 28, 29, 30)$$

$$= \overline{C}.\overline{D} + B.\overline{E} + \overline{B}.\overline{C} + \overline{A}.\overline{B}.\overline{D} + A.B.\overline{D}$$

Simplifier les expressions suivantes en utilisant les tables de karnaugh à 6 variables.
 F(A, B, C, D, E, F) =∑ (2, 3, 9, 13, 16, 18, 24, 25, 29, 34, 37, 41, 45, 48, 50, 53, 56, 57, 61)

$$= C.\overline{E}.F + B.\overline{D}.\overline{E}.\overline{F} + A.D.\overline{E}.F + \overline{C}.\overline{D}.E.\overline{F} + \overline{A}.\overline{B}.\overline{C}.\overline{D}.E$$

$$F(A, B, C, D, E, \underline{F}) = \sum (0, 1, 2, 3, 9, 11, 13, 16, 17, 18, 24, 25, 29, 32, 33, 34, 36, 37, 41, 45, 48, 49, 50, 51, 53, 55, 57, 61)$$

$$= \overline{C}.\overline{D}.\overline{F} + C.\overline{E}.\overline{F} + A.B.\overline{C}.\overline{F} + \overline{A}.\overline{B}.\overline{D}.\overline{F} + A.\overline{B}.\overline{C}.\overline{E} + \overline{A}.\overline{B}.\overline{D}.\overline{E}$$