Module de méthodes numériques

Série n°2

Exercice 1:

1-Construire le polynôme d'interpolation de Lagrange de la fonction $y = \sin(\pi x)$

aux points
$$x_0 = 0$$
, $x_1 = 1/6$, $x_2 = 1/2$.

2- Trouver l'erreur pour calculer $\sin(\pi/8)$.

Exercice 2:

On considère la fonction f(x) déterminée par le tableau suivant :

Xi	2	2.5	4
$f(x_i)$	0.5	0.4	0.25

- 1- Construire le polynôme d'interpolation de Lagrange de la fonction y = f(x).
- 2- Trouver f(3).
- 3- Sachant que f(x) = 1/x, donner l'erreur maximale lorsque on remplace f(x) par le polynôme P(x).
- 4- Supposons f'(x) = P'(x), calculer f'(3) et l'erreur sur cette valeur.

Exercice 3:

Trouver le polynôme de newton déterminé par le tableau suivant :

Xi	1	2	3	4
$f(x_i)$	1	3	2	5

Exercice 4

A l'aide du polynôme d'interpolation de Newton compléter le tableau suivant :

Xi	0	1	2	3	4
$f(x_i)$	1	3	9		81

Exercice 5 (pour les étudiants)

Soit les points suivants

Xi	0	1	2	3	4
$F(x_i)$	0	2	36	252	1040

- 1- Obtenir le polynôme de Lagrange passant par les 3 premiers points.
- 2- Obtenir le polynôme de Lagrange passant par les 4 premiers points. Est-ce possible d'utiliser les calculs faits en 1) ?
- 3- Donner l'expression analytique de l'erreur pour les polynômes obtenus en 1 et en 2.
- 4-Obtenir des approximations de f(1,5)à l'aide des 2 polynômes obtenus en 1 et en 2.