

Exemple de calcul:

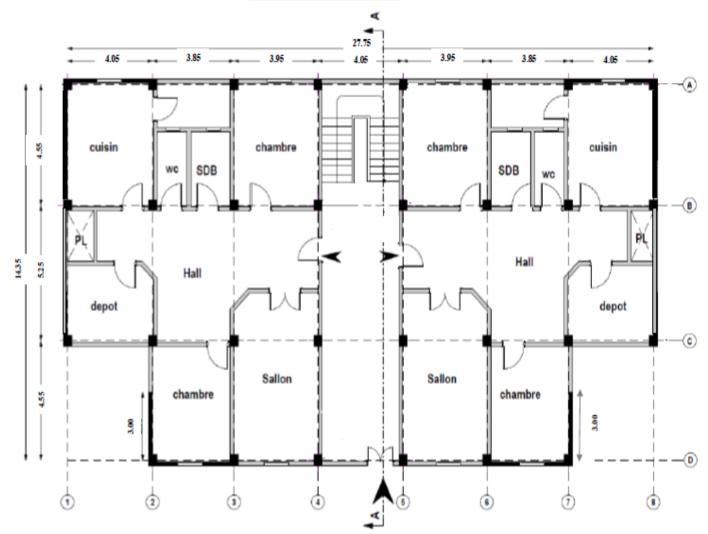


Figure 1: Vue en plan de RDC et étage courant du bâtiment.

Palliasse

G=10.186KN/ml

Q=2.5 KN/ml

Palier

G=6.02 KN/ml

Q=2.5 KN/ml

feE400; F_{C28} =25 MPa

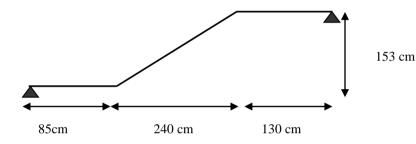
III.1 Calcul des escaliers

III.1.1 Définition

Les escaliers constituent la famille la plus employée des circulations verticales. En effet, quel que soit le type de bâtiment, ils sont indispensables soit à titre de circulation principale, comme dans une maison individuelle, soit à titre de circulation de service ou de secours dans un immeuble collectif ou dans un établissement recevant du public.

Plusieurs dispositifs permettent de passer d'un niveau à un autre, en fonction de la dénivellation et de la longueur disponible, c'est-à-dire de l'inclinaison de la pente la plus faible à la plus inclinée.

III.1.2 Exemple de calcul:


Schéma statique

Palliasse :G₁=10.186KN/ml

 $Q_1==2.5 \text{ KN/ml}$

Palier: G2=6.02 KN/ml

Q2=2.5 KN/ml

III.1.3 Charges et surcharges

Palliasse: $G_1=10.186 \text{ KN/m}^2$

 $Q_1 = 2.5 \text{ KN/m}^2$

Palier: $G_2=6.02 \text{ KN/m}^2$

 $Q_2 = 2.5 KN/m^2$

III.1.4 Combinaisons des charges

a) Calcul des charges a l'ELU et l'ELS

Le calcul se fait pour une bande de 1 ml.

a) Palliasse

L'ELU

 $qu_1 = 1.35 G_1 + 1.5 Q_1 \Rightarrow qu_1 = 1.35 10.186 + 1.5 2.5$

 $qu_1 = 17.50KN/ml$

<u>L'ELS</u>

$$qser_1 = G_1+Q_1 \Rightarrow qser_1 = 10.186+2.5$$

 $qser_1 = 12.686 \text{ KN/ml}$

b) Palier

<u>L'ELU</u>

$$\begin{array}{l} qu_2{=}1.35\;G_2{+}1.5\;Q_2 \Rightarrow \; qu_2 = 1.35\;6.02{+}1.5\;2.5 \\ qu_2{=}11.877\;KN/ml \end{array}$$

L'ELS

$$qser_2 = G_2 + Q_2 \Rightarrow qser_1 = 6.02 + 2.5$$

 $qser_2 = 8.52 \text{ KN/ml}$

Tableau III.1: Combinaisons des charges l'escalier.

Combinaisons	Paillasse (KN/ml)	Palier (KN/ml)		
ELU	17.50	11.877		
ELS	12.686	8.52		

L'escalier travaille à la flexion simple en considérant la dalle comme une poutre uniformément chargée et en tenant des types d'appuis sur lesquels elle repose.

Pour déterminer les sollicitations, on a deux méthodes de calcul qui sont les suivantes :

- La méthode des charges équivalentes.
- La méthode R.D.M.

b) Diagrammes des moments fléchissant et efforts tranchants

Type N•1 : ELU :

Figure III.1: Diagrammes de moment fléchissant et de L'effort tranchant à l'ELU.

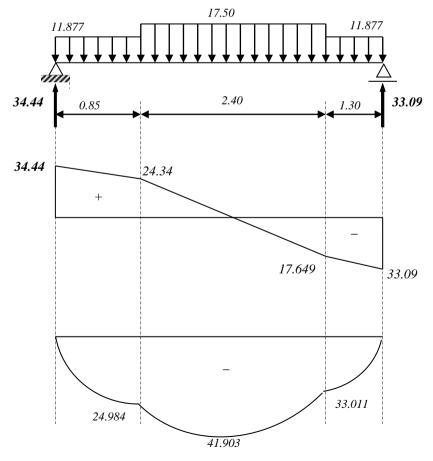


Tableau III.2: Tableau récapitulatif des sollicitations.

	M _{max} (KN.m)	M _a (KN.m)	M _t (KN.m)	T _u (KN)
E.L.U	41.903	12.570	35.617	34.44
E.L.S	26.945	8.083	22.903	24.87

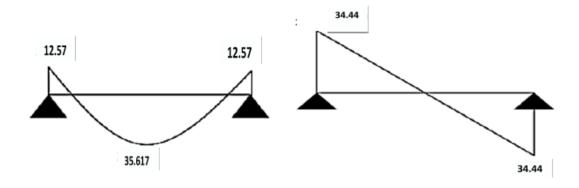


Figure III.2: Moments et efforts tranchants á E.L.U.

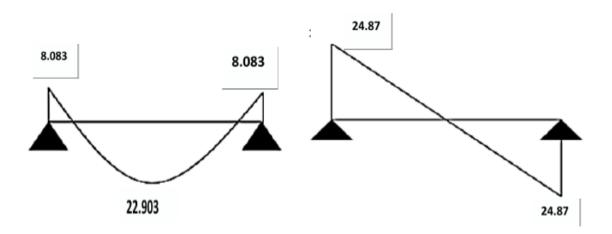


Figure III.3: Moments fléchissant et efforts tranchants á E.L.S.

III.1.5. Calcul de ferraillage

Type $N^{\bullet}1$:

- ***** Armatures longitudinales
- * Travée

$$f_{bu} = \frac{0.85 * f_{c28}}{\gamma_b} = \frac{0.85 * 25}{1.5} = 14.2MPA$$

$$f_s = \frac{f_e}{\gamma_b} = \frac{400}{1.5} = 348MPA$$

$$\mu = \frac{M_U}{b * d^2 * \sigma_b} = \frac{35.617 \times 10^3}{14.2 \times (16.2^2 \times 100)} = 0.095 < 0.392$$

Section simplement armé.

$$A'_s = 0$$

$$\alpha = 1.25(1 - \sqrt{1 - 2u}) = 0.125$$

$$\beta = (1 - 0.4\alpha) = 0.95$$

$$A_s = \frac{M_u}{\beta \times d \times \sigma_s} = \frac{35.617 \times 10^3}{348 \times 0.95 \times 16.2} = 6.65cm^2$$

Conditions non fragilité

$$A_{\min} = \max\left\{\frac{b \times h}{1000}, 0.23 \times bd \times \frac{f_{t28}}{f_e}\right\} = \max\left\{\frac{100 \times 18}{1000}, 0.23 \times 100 \times 162 \times \frac{2.1}{400}\right\} = \max\left\{1.8, 1.95\right\} cm^2$$

$$A_{\min} = 1.95cm^2 < 6.65cm^2$$

On pond 5HA14; 7.69cm²

Service Espacement:

$$S_t \le \min\{3ep, 33cm\} = 33cm$$

$$S_t = \frac{100}{4} = 25cm$$

Armature de répartition

$$A_r = \frac{A_s}{4} = \frac{7.69}{4} = 1.922 cm^2$$

On pond **4HA8**; **2.00cm**²

Service Espacement entre les armatures

$$S_t \le \min\{4h, 45cm\} = \min\{72, 45\}$$

$$S_t \leq 45cm$$

$$S_t = 33cm$$

❖ Ferraillage aux appuis

$$M_{u} = 12.57 \text{ KN.m}$$

$$\mu = \frac{12.57 \times 10^{3}}{14.2 \times 100 \times 16.2^{2}} = 0.033 < 0.392$$

$$A' = 0$$

$$\alpha = 1.25 \left(1 - \sqrt{1 - 2\mu}\right) = 0.041$$

$$\beta = \left(1 - 0.4\alpha\right) = 0.98$$

$$A_{u} = \frac{12.57 \times 10^{3}}{0.98 \times 384 \times 16.2} = 2.27 \text{ cm}^{2}$$

Condition de fragilité

$$A_{\min} = \max \left\{ \frac{b \times h}{1000}; 0.23 * b * d * \frac{f_{t28}}{fe} \right\} = \max \left\{ 1.8; 1.95 \right\}$$

$$A_{\min} = 1.95cm^2 < 2.27cm^2$$

On prend: 4HA10 $S=3.15 cm^2$

Espacement

$$S_t \le \min\{3ep, 33cm\} = 33cm$$

 $S_t = \frac{100}{4} = 25cm$

Armature de répartition

$$A_r = \frac{A_s}{4} = \frac{3.15}{4} = 0.80cm^2$$

On prend: 3HA8 S=1.51 cm^2

Vérification à E.L.S

On vérifie que :
$$\sigma_b = \frac{M_{ser}}{I} y \le \overline{\sigma}_{bc}$$

 $\frac{b}{2} \times y^2 + h \times A'_s(y - c') - n \times A_s(d - y) = 0$
 $Avec \to n = 15$
 $h \times A'_s(y - c') = 0$
 $Travée$:
 $\frac{100}{2} y^2 - 15 \times 7.69(16.2 - y) = 0$
 $50y^2 + 115.35y - 1868.67 = 0$
 $y^2 + 2.307y - 37.37 = 0$
 $\Delta = b^2 - 4ac = 154.80$
 $y = \frac{-2.772 + 13.6861}{2} = 5.06$
 $I = \frac{b \times y^3}{3} + n \times A_s(d - y)^2$
 $I = \frac{100 \times 5.06^3}{3} + 15 \times 7.69 \times (16.2 - 5.06)^2 = 18633.35cm^4$
 $\sigma_b = \frac{22.903 \times 10^5 \times 5.06}{18633.35 \times 10^2} = 6.21MPa < \overline{\sigma}_b = 15 MPa \implies OK$

Tableau III.3: Vérification des contraintes à l'ELS.

	M _{ser} (KN.m)	A_s (cm ²)	Y (cm)	I (cm ⁴)	σ _{bc} (MPa)	$\sigma_b \leq \overline{\sigma}_b$
Travée	22.903	7.69	5.06	18633.35	6.21	
Appuis	8.083	3.15	3.47	9049.72	8.78	CV

Vérification de la contraint de cisaillement

$$T_{\text{max}} = 34.44KN$$

$$\tau_{u} \le \overline{\tau_{u}}$$

$$\tau_{u} = \frac{v_{u}}{b \times d} = \frac{34.44 \times 10^{3}}{162 \times 1000} = 0.212MPA$$

❖ La fissuration est considérée comme peu préjudiciable

$$\overline{\tau_u} = \min \left\{ 0.2 \times \frac{f_{c28}}{\gamma_b}; 5MPa \right\} = \min \left\{ 3.33MPa; 5MPa \right\}$$
 $\tau_u = 0.212 < 3.33 \rightarrow CV$

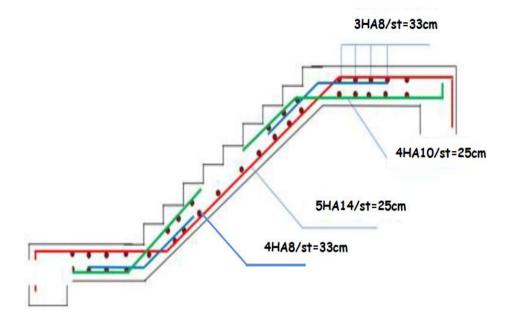


Figure III.4: Schéma de ferraillage d'escalier.