Chapitre I

Propriétés des substances pures

Plan:

- 1- Introduction
- 2- Une substance pure
- 3- Equilibre des phases (Vapeur-liquide-solide.
- 4- Propriétés indépendantes d'une substance pure
- 5- Tables des propriétés thermodynamiques.
- 6-Comportement PVT des gaz de faibles densités et de densité modérée.

1-1. Pourquoi connaître les propriétés d'une substance pure?

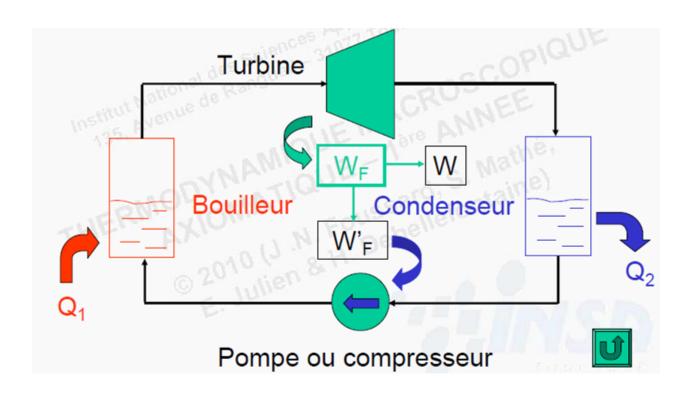


Schéma d'une centrale thermique

Dans le circuit fluidique l'eau passe par plusieurs état:

- **Bouilleur**: eau liquide à l'entrée, vapeur surchauffée à la sortie
- Turbine : détente de la vapeur
- Condenseur : vapeur à l'entrée, l'eau liquide à la sortie
- Pompe: compression de l'eau liquide

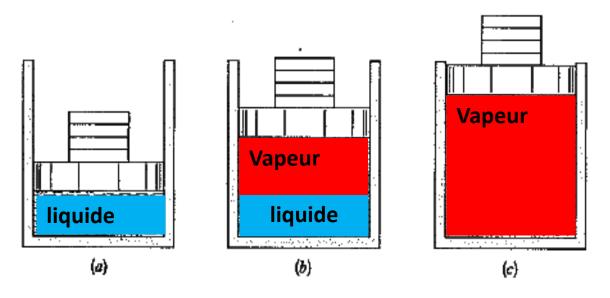
La connaissance des propriétés de l'eau permet le bon dimensionnement des différents éléments de l'installation.

Par exemple:

Conduites sous dimensionnées — Suraccélération du fluide — pertes de pression additionnelles — pompes surdimensionnée

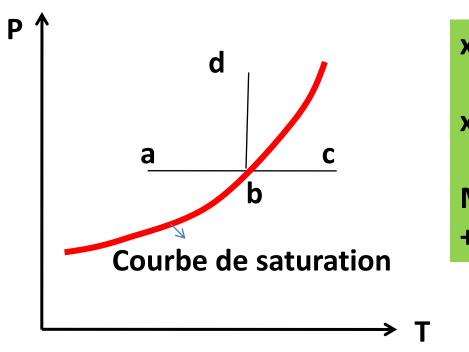
pertes de travail sur l'arbre de la turbine

1-2. Définition d'une substance pure


C'est une substance homogène avec une composition chimique stable. Elle peut être une mixture de phases avec une même composition chimique.

Exemple:

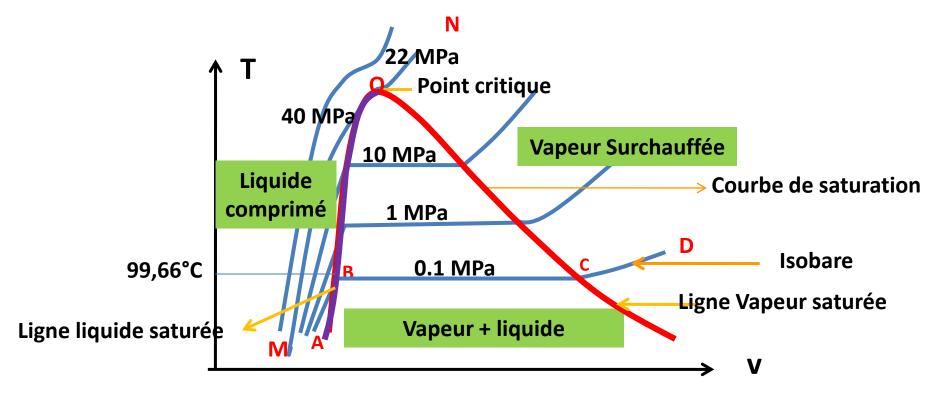
Dans ce cours l'air est considéré comme substance pure tant qu'il ne change pas de phase.


1.3 Equilibre des phases Vapeur - liquide – solide

Chauffons 1kg d'eau à l'état initial P= 1 bar et T=20°C

- 1- Au début du chauffage pas de variation du volume(V).
- 2- A T= 99.66°C apparition de la première bulle de vapeur et le V augmente, T et P restent constante.
- 3- Disparition de la dernière goutte d'eau le V, T augmente et P reste constante.

Représentation de l'évolution sur la courbe de vaporisation

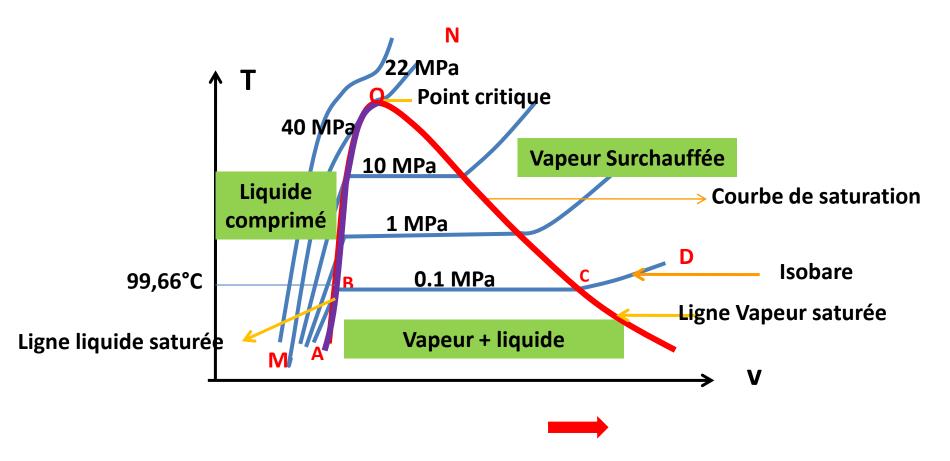

x est le Titre vapeur

x= masse vapeur/ masse totale

Masse totale= masse vapeur +masse liquide

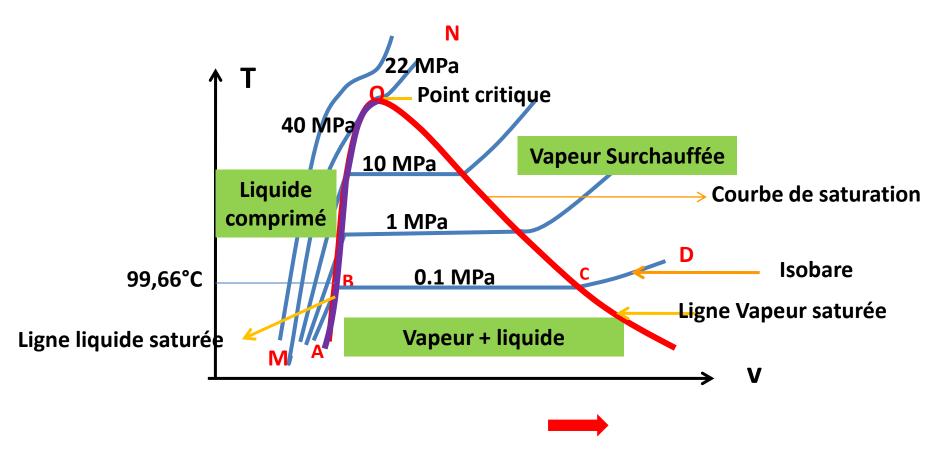
- (a) Phase Liquide.
- (b) Point de saturation (Coexistence liquide-vapeur) T_{sat} , P_{sat} , x
- (c) Phase vapeur surchauffée.
- (d) Phase liquide comprimé.

Représentation sur diagramme Température -volume massique



AB chauffage de (P=0.1MPa, T=20°C) (P=0.1MPa, T=99.6°C)

B apparition de la première bulles de vapeur; BC chauffage a P=0.1MPa, T=99.6°C; C disparition de la dernière goutte d'eau.


CD surchauffe de vapeur augmentation de T et de v avec P=Cste

Représentation sur diagramme Température -volume massique

M ON P= 22.09 MPa (Point critique P_c , T_c , v_c) la ligne de vaporisation est remplacée par un point (la vaporisation est instantanée). Il n'y a pas de coexistence liquide-vapeur

Représentation sur diagramme Température -volume massique

La courbe P = 40 MPa > 22.09 MPa (Pression supercritique) une augmen-tation continue du volume massique. Les phases liquide et vapeur sont instables. Dans ce cas on parle seulement de fluide.

Calcul du titre vapeur

Calculons le titre x à un point P de la ligne de vaporisation BC.

$$V = V_{liq} + V_{gaz} = m_{liq}v_f + m_{gaz}v_g$$

Le volume spécifique de la mixture v:

$$v = \frac{V}{m} = \frac{m_{liq}}{m} v_f + \frac{m_{gaz}}{m} v_g = (1 - x) v_f + x v_g$$

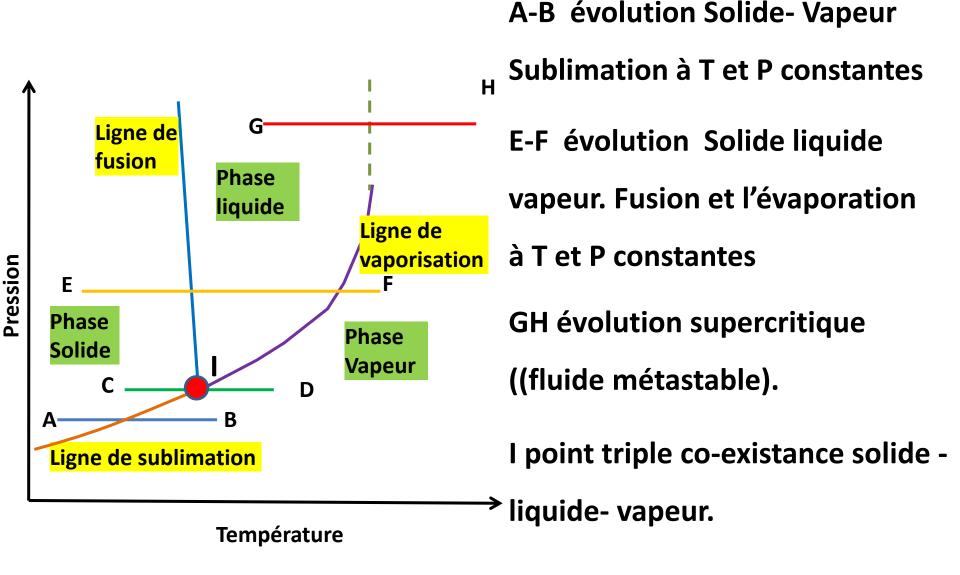
Par définition prenons

$$v_{fg} = v_g - v_f$$

Nous endéduisons :

$$x = \frac{v - v_f}{v_{fg}}$$

Quelques valeurs du point critiques


	Température Critiques °C	Pression Critiqu MPa	Volume Critique M³/kg
CO ₂	31.05	7.39	0.002143
H ₂	-239.85	1.30	0.032192

Point critique et la température critique varient considérablement d'une substance à une autre:

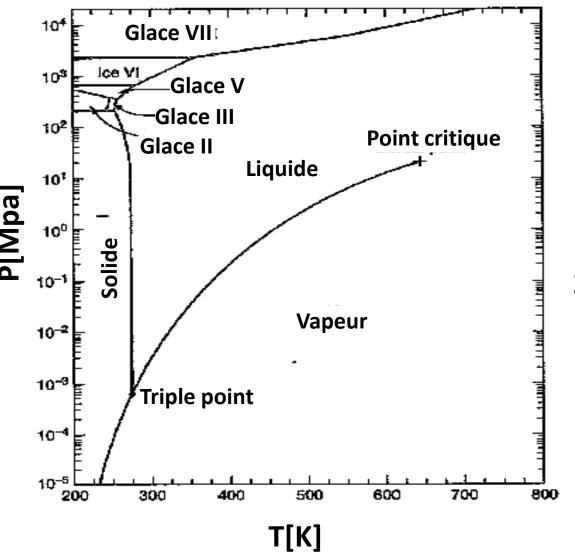
Hélium $T_c = 5.3 \text{ k} > 50 \text{ fois la température normale de l'hélium.}$

Eau $T_c > 374.14$ °C = 2 fois la température normale de l'eau.

Chauffant le système précédent en prenons 1 kg de glace à T= -20°C et P= 100 kPa.

A noter:

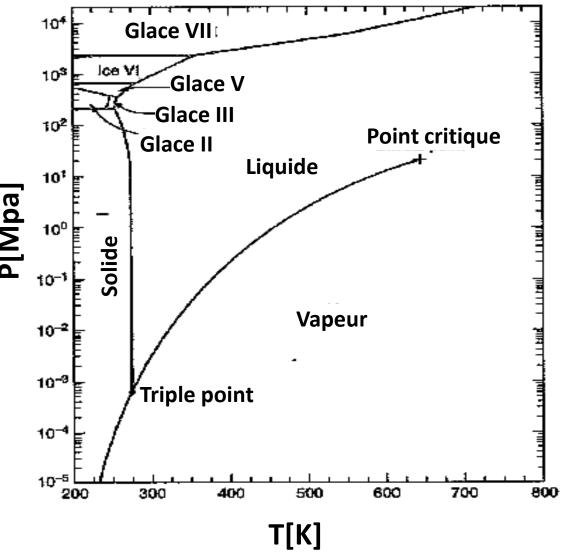
L'évolution AB se passe à P= 0.260 kPa et T_i= -20 °C.


A T= -10°C la glace s'évapore sans passer par le liquide. Après tout chauffage entraine élévation de la température de la vapeur.

L'évolution CD se passe à une P=0.6113 kPa et T_i= -20 °C. Chauffage augmente la température de l'eau jusqu'à T=0.01 °C une partie de la glace se transforme en eau et une autre partie en vapeur.

Quelques valeurs du point triple

	Température °C	Pression kPa
Hydrogène (normal)	-256	7.194
Oxygène	-219	0.15
Azote	-210	12.53
Dioxyde de carbone	-56.4	520.8
Mercure	-39	13. 10 ⁻⁸
Eau	0.01	0.6113
Zinc	419	5.066
Argent	961	0.01
Cuivre	1083	79. 10 ⁻⁶


Diagramme des phases du solide (Cas de l'eau)

Notons:

- Une substances pures
 peut exister sous
 différents phases
 solides.
- 2. Passage d'une phase solide à une autre phase solide est appelé transformation allotropique.

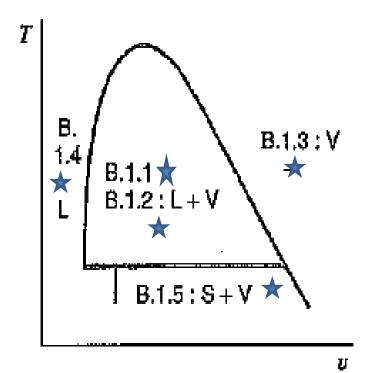
Diagramme des phases du solide (Cas de l'eau)

Notons:

- 3. Plusieurs points solides peuvent exister solide-solide –solide; solide-solide-liquide.
- 4. Un seul point triple solide-liquide-vapeur

1.4 Propriétés indépendantes d'une substance pure

L'état thermodynamique d'une substance pure est complètement défini si deux de ses propriétés sont connues, à condition que ces deux propriétés soient indépendantes.


Variables indépendantes

Liquide comprimé et vapeur surchauffée : T, P et V

Fluide à la saturation (Liq+vap) : TOUP, V, X, sont dépendantes

1.5 Tables des propriétés thermodynamiques

En générale les tables thermodynamiques donnent 6 propriétés pour les substances pures *T, P, v, h* (enthalpie), *u* (energie interne), *s* (entropie).

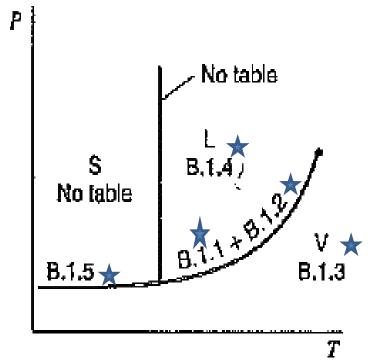
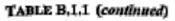
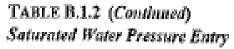



TABLE B.1.1
Saturated Water

		SPE	CIFIC VOLUME	, m³/kg	INTERNAL ENERGY, kJ/kg			
Temp. (°C)	Press. (kPa)	Sat. Liquid v _f	Evap.	Sat. Vapor	Sat. Liquid u _f	Evap.	Sat, Vapor u _g	
0.01	0.6113	0.001000	206.131	206.132	0	2375.33	2375.33	
5	0.8721	0.001000	147,117	147.118	20.97	2361.27	2382.24	
10	1.2276	0,001000	106.376	106.377	41.99	2347.16	2389.15	
15	1.705	0.001001	77.924	77.925	62.98	2333.06	2396.04	
20	2,339	0.001002	57.7887	57.7897	83.94	2318.98	2402.91	
25	3.169	0.001003	43.3583	43.3593	104.86	2304.90	2409.76	
30	4.246	0.001004	32.8922	32,8932	125.77	2290.81	2416.58	


Saturated Water

			ENTHALPY, kJ	/kg	ENTROPY, kJ/kg-K			
Temp. (°C)	Press. (kPa)	Sat. Liquid	Evap. h _{fg}	Sat. Vapor	Sat. Liquid	Evap. S _{fr}	Sat. Vapor	
0.01	0.6113	0.00	2501.35	2501.35	0	9,1562	9,1562	
5	0.8721	20.98	2489.57	2510.54	0.0761	8.9496	9.0257	
10	1.2276	41,99	2477.75	2519.74	0.1510	8.7498	8.9007	
15	1.705	62.98	2465.93	2528,91	0.2245	8.5569	8.7813	
20	2.339	83.94	2454.12	2538.06	0.2966	8.3706	8.6671	
25	3.169	104.87	2442.30	2547.17	0.3673	8.1905	8,5579	
30	4.246	125,77	2430.48	2556.25	0.4369	8.0164	8.4533	

TABLE B.1.2 Saturated Water Pressure Entry

		SPE	CIFIC VOLUMB,	, m³/kg	Internal Energy, kJ/kg			
Press. (kPa)	Temp. (°C)	Sat. Liquid	Evap. v _{fs}	Sat. Vapor v_{ε}	Sat. Liquid 47	Evap. u _{fz}	Sat. Vapor	
0.6113	0.01	0.001000	206.131	206.132	0	2375.3	2375.3	
1	6.98	0.001000	129.20702	129.20802	29.29	2355.69	2384.98	
1.5	13.03	0,001001	87.97913	87.98013	54.70	2338.63	2393.32	
	17.50	0.001001	67.00285	67.00385	73.47	2326.02	2399.48	
2.5	21.08	0.001002	54.25285	54.25385	88.47	2315.93	2404.40	

			ENTHALPY	, kJ/kg	ENTROPY, kJ/kg-K			
Press, (kPa)	Temp. (°C)	Sat. Liquid h _f	Evap. h _R	Sat. Vapor hg	Sat. Liquid	i Evap. <i>S_{fe}</i>	Sat. Vapor	
0.6113	10,0	0.00	2501,3	2501.3	0	9.1562	9.1562	
1.0	6.98	29.29	2484.89	2514.18	0.1059	8.8697	8.9756	
1.5	13.03	54.70	2470.59	2525.30	0.1956	8.6322	8.8278	
2.0	17,50	73.47	2460.02	2533.49	0.2607	8,4629	8.7236	
2.5	21.08	88.47	2451.56	2540.03	0.3120	8.3311	8.6431	

TABLE B.1.3
Superheated Vapor Water

Temp.	υ (m³/kg)	u (kJ/kg)	<i>h</i> (kJ/kg)	s (kJ/kg-K)	<i>v</i> (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)
		P = 10 kP	a (45.81)			P = 50 k	Pa (81.33)	
Sat.	14.67355	2437.89	2584.63	8.1501	3.24034	2483.85	2645.87	7.5939
50	14.86920	2443.87	2592.56	8.1749	_	_	_	_
100	17,19561	2515.50	2687.46	8.4479	3,41833	2511.61	2682.52	7.6947
150	19.51251	2587.86	2782.99	8.6881	3.88937	2585.61	2780.08	7,9400
200	21.82507	2661.27	2879.52	8.9037	4.35595	2659.85	2877.64	8.1579
250	24.13559	2735.95	2977.31	9.1002	4.82045	2734.97	2975.99	8.3555
300	26.44508	2812.06	3076.51	9.2812	5.28391	2811.33	3075.52	8.5372
400	31.06252	2968.89	3279.51	9.6076	6.20929	2968.43	3278.89	8.8641
700	22720000					0101-04	9400 69	0.1545

TABLE B.1.4 Compressed Liquid Water

Temp. (°C)	ຍ (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)	υ (m³/kg)	n (kJ/kg)	/ı (kJ/kg)	s (kJ/kg-K
		500 kPa (151.86)			2000 kPa	(212,42)	
Sat.	0.001093	639.66	640.21	1.8606	0.001177	906.42	908.77	2,4473
0.01	0.000999	10.0	0.51	00000,0	0.000999	0.03	2.03	0.0001
20	0.001002	83.91	84.41	0.2965	0.001001	83.82	85.82	.2962
40 %	0.001008	167.47	167.98	0.5722	0.001007	167.29	169.30	.5716
60	0.001017	251.00	251.51	0.8308	0.001016	250.73	252.77	.8300
80	0.001029	334.73	335.24	1.0749	0.001028	334.38	336.44	1.0739
100	0.001043	418.80	419.32	1.3065	0.001043	418.36	420.45	1.3053
120	0.001060	503.37	503.90	1.5273	0.001059	502.84	504.96	1.5259
140	0.001080	588.66	589.20	1.7389	0.001079	588.02	590.18	1.7373
160	919 <u>4</u> 949,881	والمرتدي	ili de la como		0.001101	674.14	676.34	1.9410
180					0,001127	761.46	763.71	2.1382
200					0.001156	850.30	852.61	2.3301

1. 6 Le comportement P-V-T des gaz de densités faible et modérée

L'énergie intermoléculaire de ces gaz est considérée négligeable, la

cause: Grandes distances séparent ces molécules

Ce type de gaz est connu sous le nom : Gaz Parfaits

Loi des gaz parfait:

$$PV = n\bar{R}T$$
; $P\bar{v} = \bar{R}T$

P: Pression [kPa]; V: Volume [m³]; T: Température [K]; n: nombre de moles [kmoles]; R: constante des gaz parfaits [kJ/(kmoles. K]; V: volume molaire [m³/kmoles].

1. 6 Le comportement P-V-T des gaz de densités faible et

modérée

L'énergie intermoléculaire de ces gaz est considérée négligeable, la

cause: Grandes distances séparent ces molécules

Ce type de gaz est connu sous le nom : Gaz Parfaits

Loi des gaz parfait:

$$PV = n\bar{R}T$$
; $P\bar{v} = \bar{R}T$

n: nombre de mole [kmoles]

$$n = \frac{m}{M} \left[\frac{kg}{kg/kmole} \right]$$

m masse du gaz ; M masse molaire du même gaz

1. 6 Le comportement P-V-T des gaz de densités faible et

L'énergie intermoléculaire de ces gaz est considérée négligeable, la

cause: Grandes distances séparent ces molécules

Ce type de gaz est connu sous le nom : Gaz Parfaits

Loi des gaz parfait:

modérée

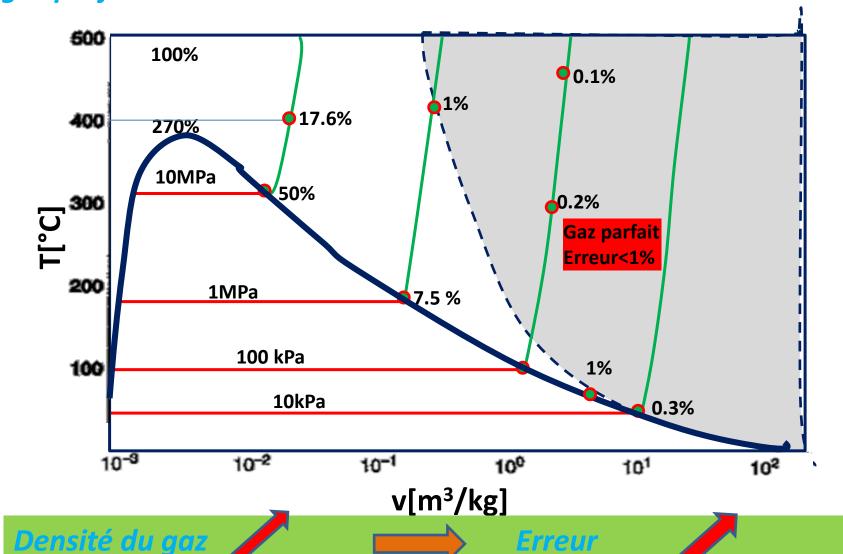
$$PV = n\bar{R}T$$
; $P\bar{v} = \bar{R}T$

R: constante universelle des gaz parfaits [kJ/(kmoles.K)]

$$\bar{R} = 8.3145 \left[\frac{kJ}{kmole \, K} \right]$$

Autre écriture de la loi des gaz parfaits (utilisée en génie mécanique) PV = mRT

m: masse du gaz [kg];

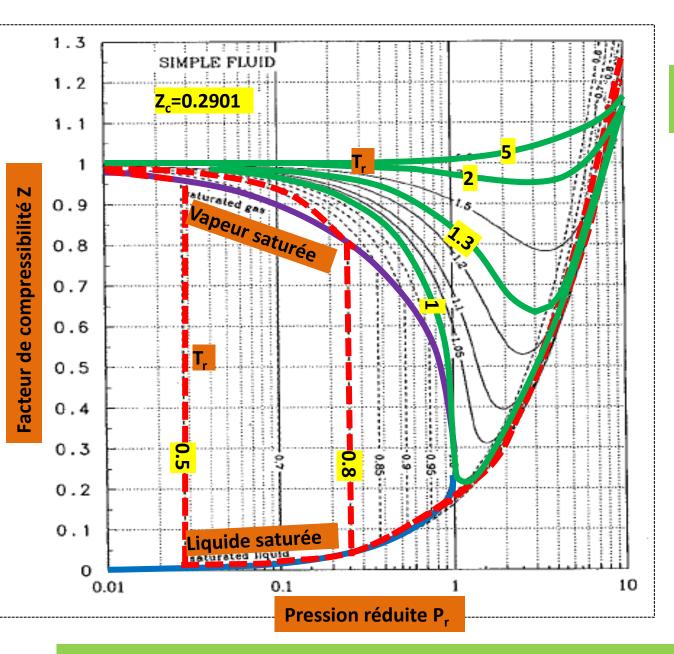

 $R = \frac{R}{M}$

R: constante du gaz considéré [kJ/kg K]

Gaz	Formule	Masse	R [kJ/kg K]
	chimique	moléculaire	
Vapeur d'eau	H_2O	18.015	O.4615
Air		28.97	0.287
Ammoniac	NH ₃	17.031	0.4882
Hydrogène	H_2	2.016	4.1243
R-134a	CF ₃ CH ₂ F	102.03	0.08149
Oxygène	O_2	31.999	0.2598

Questions Importantes:

1- A partir de quelle densité un gaz peut être considéré comme un gaz parfait ?


2- Comment compenser la déviation d'un gaz réel / gaz parfait ?

Par l'introduction d'un coefficient de correction appelé:

Coefficient de compressibilité Z

$$Z = rac{Pv}{RT}$$
 $Pv = ZRT$ $Z = rac{v_{corrig\'e}}{v_{parfait}}$

- 1- Pour le cas des gaz parfait Z=1.
- 2- L'écart entre Z et l'unité mesure l'écart entre la relation réelle et l'équation d'état des gaz parfaits.

Facteur de compressibilité Z= v_{corrigé} /v_{gaz parfait}

Pression réduite $P_r = P/P_{critique}$

Température réduite $T_r = T/T_{critique}$

Facteur de compressibilité pour un fluide simple de Lee Kesler

CONCLUSIONS (facteur de compressibilite)

- •À basses pressions, $P_r <<1$, les gaz se comportent comme des gaz parfaits peu importe la température.
- •À hautes températures, $T_r > 2$, les gaz se comportent comme des gaz parfaits peu importe la pression.
- •L'écart avec la loi des gaz parfait est maximal au voisinage de la pression critique.

Peut on considérer la vapeur d'eau comme un gaz parfait ?

- À des pressions inférieures à 10kPa, la vapeur d'eau peut être considérée comme un gaz parfait.
- <u>Air climatisé</u>: la vapeur d'eau peut être considérée comme un gaz parfait. Dans ces applications, la pression de la vapeur d'eau demeure inférieure à 10 kPa.
- <u>Cycles vapeur</u>: Les pressions en jeu sont beaucoup plus élevées que 10 kPa. Dans ce cas, les tables thermodynamiques sont utilisées