COURBES ALGEBRIQUES

(Bernard Le Stum)

CHAPITRE 1 - CORRIGES

1.1.4. On a

$$\begin{split} V(Y^2-X^2+X^4) &\cap V(Y-tX) = V(Y^2-X^2+X^4,Y-tX) \\ V(Y^2-X^2+X^4) &\cap V(Y-tX) = V((tX)^2-X^2+X^4,Y-tX) \\ V(Y^2-X^2+X^4) &\cap V(Y-tX) = V(X^2(X^2+t^2-1),Y-tX) \\ V(Y^2-X^2+X^4) &\cap V(Y-tX) = V(X^2,Y-tX) \cup V(X^2+t^2-1,Y-tX) \\ &= \begin{cases} \{O,(\sqrt{1-t^2},t\sqrt{1-t^2}),(-\sqrt{1-t^2},-t\sqrt{1-t^2})\} \text{si } |t| \leq 1 \\ \{O\} \text{ sinon.} \end{cases} \end{split}$$

On vérifie aussi que $V(Y^2-X^2+X^4)\cap V(X)=\{O\}$. On voit donc que la courbe affine plane d'équation $Y^2=X^2-X^4$ s'obtient par symétrie centrale de centre O à partir de la courbe paramétrée

$$\begin{cases} x = \sqrt{1 - t^2} \\ y = t\sqrt{1 - t^2}. \end{cases}$$

Celle ci est définie pour $|t| \leq 1$. Comme x est paire et y impaire, on peut limiter l'intervalle d'étude à [0, 1] et faire une symétrie d'axe (OX). Les fonctions x et y sont dérivables pour $t \neq 1$ avec $x' = -t/\sqrt{1-t^2}$ et $y' = (1-2t^2)/\sqrt{1-t^2}$ si bien que la pente de la courbe est donnée par $m:=y'/x'=(2t^2-1)/t$. En particulier, celle ci s'annule pour $t=\sqrt{2}/2$, c'est à dire au point de coordonnées $(\sqrt{2}/2, 1/2)$. On trace donc l'arc qui part du point (1, 0) avec une pente verticale, passe par le point $(\sqrt{2}/2, 1/2)$ avec une pente horizontale et arrive en O avec la pente -1. Il ne reste plus alors qu'a effectuer les symétries d'axe (OX) et de centre O.

1.2.1. Il est clair que $(a, b, c) \in C$ si et seulement si $b = a^2$ et $c = a^3$. On a donc $C = V(Y - X^2, Z - X^3)$.

1.2.2. On vérifie que $C = V(Y - X^2, XZ - 1)$.

1.2.4. Montrons que $C = V(X^3 - YZ, Y^2 - XZ, Z^2 - X^2Y)$: L'inclusion directe est immédiate. Réciproquement, soit $(a, b, c) \in \mathbb{A}^3$ tel que $a^3 = bc$, $b^2 = ac$ et $c^2 = a^2b$. Si a = 0, alors b = c = 0 et $P \in C$. Sinon on pose t = b/a et on remplace b par at. On obtient $a^3 = atc$, $a^2t^2 = ac$ et $c^2 = a^3t$. On voit donc que $a^2 = ct$, $at^2 = c$ et $c^2 = a^3t$. Il en résulte que $at^3 = at^2t = ct = a^2$ si bien que $a = t^3$ et finalement $b = at = t^4$, $c = at^2 = t^5$.

1.2.7. On a C=V $(\{X_i^{d_j}-X_j^{d_i}\}_{i,j=1,\dots,n}):$ L'inclusion directe est claire. D'autre part, puisque les d_i sont premiers entre eux, il existe des entiers c_1,\dots,c_n tels que $\sum_{i=1}^n c_i d_i = \mathbf{1}$. Soit $P:=(a_1,\dots,a_n)\in V$ $(\{X_i^{d_j}-X_j^{d_i}\}_{i,j=1,\dots,n})$. Si l'un des a_i est nul, on pose t=0 et sinon, on pose $t=\prod_{i=1}^n a_i^{c_i}$. On vérifie facilement que $P=(t^{d_1},\dots,t^{d_n})$.

1.2.10. Soit P un point du plan affine réel de coordonnées polaires r et θ . Si $P \in C$, alors $r = \sin 2\theta = 2\sin\theta\cos\theta$. En multipliant par r^2 et en élevant au carré, on trouve que P est sur la courbe d'équation $(X^2 + Y^2)^3 = 4X^2Y^2$. Réciproquement, si P est sur cette courbe, alors $\pm r = \sin 2\theta$. On a donc, soit $r = \sin 2\theta$, soit $-r = \sin 2\theta = \sin 2(\theta + \pi)$. Puisque le point P et le point de coordonnées polaires -r et $\theta + \pi$ sont identiques, on voit que $P \in C$.

1.2.11. On a

$$\sin n\theta = \prod_{k=0}^{n-1} (\sin \theta + \tan \frac{k\pi}{n} . \cos \theta).$$

On en déduit facilement que C est la courbe algébrique d'équation

$$(X^2 + Y^2)^{(n+1)/2} = \prod_{k=0}^{n-1} (Y + tan \frac{k\pi}{n} X)$$

1.3.1. L'intersection de la droite d'équation X = a avec C est donnée par X = a et $X^2Y^2 + X^2 + Y^2 = 2XY(X + Y + 1)$, soit encore X = a et $(a - 1)^2Y^2 - 2a(a + 1)Y + a^2 = 0$. Si a = 1, on voit que C et la droite se rencontrent au point (1, 1/4). Sinon, on calcule le discriminant et on trouve $\Delta = 4a^3$. On voit donc que si a = 0, la droite coupe C a l'origine, si a est un carré non nul, la droite coupe C au point $(a, a/(1\pm\sqrt{a})^2)$ et que si a n'est pas un carré, la droite ne coupe pas C. L'intersection de C avec Δ est donnée par $X^2Y^2 + X^2 + Y^2 = 2XY(X + Y + 1)$ et Y = X, ou encore $X^4 = 4X^3$ et Y = X. On voit donc que $C \cap \Delta$ est composé de C et de (4, 4). L'intersection de C avec Δ' est donné par $X^2Y^2 + X^2 + Y^2 = 2XY(X + Y + 1)$ et

- Y=-X, ou encore $X^4=-4X^2$ et Y=-X. On voit donc que $C\cap\Delta'$ est réduite à O si -1 n'est pas un carré et composé des trois points O, (2i,-2i) et (-2i,2i) sinon.
- **1.3.2.** Supposons qu'il existe un plan $P = V(\alpha X + \beta Y + \gamma Z + \delta)$ tel que $C \subset P$. Alors pour tout $t \in k$, on aurait $\alpha t + \beta t^2 + \gamma t^3 + \delta = 0$. Puisque k est infini, on aurait donc $\alpha = \beta = \gamma = \delta = 0$. Contradiction.
- **1.3.3.** Si $D := \{(a + \alpha t, b + \beta t, c + \gamma t), t \in k\}$ est une droite contenue dans S, on a pour tout $t \in k$, $(a + \alpha t)^3 = (b + \beta t)(c + \gamma t)$. Puisque k est infini, on a nécessairement $\alpha = 0$ et donc pour tout $t \in k$, $a^3 = (b + \beta t)(c + \gamma t)$. On en déduit que $\beta \gamma = 0$. Si $\beta = 0$, alors $\gamma \neq 0$ et pour tout $t \in k$, $a^3 = b(c + \gamma t)$. On voit donc que b = 0 et il en résulte que a = 0. On obtient donc $D = \{(0, 0, c + \gamma t), t \in k\} = (OZ)$. De même, si $\gamma = 0$ on trouve D = (OY). Puisque ces deux axes sont bien contenus dans S, ce sont les seules droites contenues dans S.
- **1.3.4.** C'est l'axe des Z : si D est une droite contenue dans V, alors D est contenue dans la surface S d'équation $X^3 = YZ$. On sait alors que D = (OY) ou D = (OZ) et on vérifie que $(OZ) \subset V$ mais que $(OY) \not\subset V$.
- **1.3.6.** L'intersection $C \cap \Delta$ est donné par Y = c(X a) + b et F(X, Y) = 0, soit encore Y = c(X a) + b et G(X) = 0. On voit donc que la première projection induit bien une bijection de $C \cap \Delta$ sur les racines de G.
- **1.3.7.** L'application qui a un point du plan associe son abscisse induit une bijection de $C \cap \Delta$ sur l'ensemble des racines de $(c(X-a)+b)^2-(X^3-X)=-X^3+c^2X^2+\ldots$ L'égalité annoncée provient donc de la formule donnant la somme des racines d'un polynôme.
- **1.4.4.** Si $a, b, c, d \in k$, on a (ac)(bd) = (ad)(bc), ce qui montre que S est contenu dans la surface d'équation XT = YZ. Réciproquement, soit $P := (\alpha; \beta; \gamma; \delta) \in \mathbb{P}^4$ tel que $\alpha\delta = \beta\gamma$. Si $\gamma \neq 0$, on pose $a = \alpha, b = \gamma, c = 1$ et $d = \delta/\gamma$, si bien que $(ac; ad; bc; bd) = (\alpha; \alpha\delta/\gamma; \gamma; \delta) = P$ avec $b, c \neq 0$. Si $\gamma = 0$ et $\alpha \neq 0$, on pose $a = 1, b = 0, c = \alpha$ et $d = \beta$ si bien que $(ac; ad; bc; bd) = (\alpha; \beta; 0; 0) = P$ avec $a, c \neq 0$. Enfin, si $\gamma = \alpha = 0$, on pose $a = \beta, b = \delta, c = 0$ et d = 1 si bien que $(ac; ad; bc; bd) = (0; \beta; 0; \delta) = P$ avec $d \neq 0$ et a ou $b \neq 0$ car $(0, \beta, 0, \delta) \neq 0$.
- **1.5.5.** Dire que $(a, b) \in C$ et que $\Phi(a, b) = (a, c)$ signifie que $a^2b^2 + a^2 + b^2 = 2ab(a+b+1)$ et que c=a+b-ab, ou encore que $4ab=(a+b-ab)^2$ et que c=a+b-ab

a+b-ab, ce qui s'écrit encore $4ab=c^2$ et $b=c-a-c^2/4$. On obtient finalement $4a^2-(c^2+4c)a+c^2=4a^2-4(a+b)a+ab=0$ et $b=c-a-c^2/4$. On voit donc que Φ est une bijection de C sur C' et que la réciproque est induite par l'application polynomiale $(a,c)\longmapsto (a,c-a-c^2/4)$. Cela signifie bien que Φ induit un isomorphisme de C sur C'.

- **1.5.6.** On peut toujours trouver une application affine bijective Φ du plan dans lui même qui transforme D_1 et D_2 en les axes des coordonnées. C'est un isomorphisme de $D_1 \cup D_2$ sur C.
- **1.6.1.** Puisque k est infini, A est infini et contenu dans la droite d'équation X = 1. Puisque les fermés propres d'une droite sont finis, on voit que V est la droite d'équation X = 1.
- **1.6.3.** Comme A est infini, V est un sous-ensemble algébrique infini de \mathbb{A}^1 , donc $V = \mathbb{A}^{1}$.
- **1.6.4.** Puisque k est infini, A est infini et $A \subset V(Y X^2)$ avec $Y X^2$ irréductible. Il suit que V est la parabole d'équation $Y = X^2$.
- **6.6.** Pour tout $b \in [-1, +1]$, l'intersection de A avec la droite d'équation Y = b est infinie. Donc si $A \subset V(S)$ et $F \in S$, Y b divise F. Comme ceci vaut pour une infinité de valeurs de b, on en déduit F = 0. On a donc F = 0 et $V(S) = \mathbb{A}^2$.
- **1.7.1.** Si $\Phi(t) = : P = : (a, b, c)$, on a b = a(a 1) et $c^2 = a^3$ d'où

$$\Phi(\mathbb{A}^1) \subset C := V(\, Y - X(X-1)\,,\, Z^2 - X^3\,).$$

Inversement, si $P=:(a,b,c)\in C$, on pose t=0 si a=0 et t=c/a sinon. On vérifie facilement que $P\longmapsto t$ est un inverse pour Φ . Il en résulte que Φ est une bijection de \mathbb{A}^1 sur $C=V(Y-X(X-1),Z^2-X^3)$. Puisque Φ est polynomiale, elle est continue. Enfin, l'image d'un fermé de \mathbb{A}^1 par Φ est soit fini soit égale à C, et donc fermée. Cela montre que Φ est une application continue bijective fermée, et donc un homéomorphisme.

1.7.3. Si $t \in \mathbb{R}$ et $P := (a, b) := \Phi(t)$, on a a = bt. On en déduit que $a^3 = b^3t^3$ et il suit que $b^4 = b^3(1 - t^3) = b^3 - b^3t^3 = b^3 - a^3$. On voit donc que P est sur la courbe C d'équation $Y^4 = Y^3 - X^3$. Réciproquement, soit $P = (a, b) \in C$. Si P = O, on

pose t=1. Sinon, on a $b \neq 0$ et on pose t:=a/b. Dans les deux cas, on vérifie aisément que $P=\Phi(t)$. Puisque Φ est clairement injective, cette application induit une bijection de \mathbb{A}^1 sur C. Puisque Φ est une application polynomiale, elle est continue. C'est un homéomorphisme car elle est fermée.

- **1.7.4.** Puisque la première projection $x:C\longrightarrow \mathbb{A}^1$ est injective, la courbe C ne peut pas être le produit d'une partie de \mathbb{A}^1 et de l'axe des Y. On sait qu'alors, x(C) contient un ouvert non vide. En passant aux complémentaires, on voit que le complémentaire Z de x(C) dans \mathbb{A}^1 est contenu dans un fermé propre. Puisque les fermés propres de \mathbb{A}^1 sont les ensembles finis, on voit que Z est fini (ou vide) et donc fermé. Il suit que x(C) est ouvert.
- **1.8.6.** Le polynôme $X(X-1)(X-\lambda)$ étant de degré impair ne peux pas être un carré dans k[X]. Il suit que le polynôme $Y^2-X(X-1)(X-\lambda)$ est unitaire de degré 2 en Y et sans racine dans k[X]. Il est donc est irréductible. Puisque k est algébriquement clos, C est une courbe irréductible.
- **1.8.7.** Les facteurs irréductibles du polynôme $(X^2 + XY + Y^2)(X^2 + Y^2)$ sont $X jY, X j^2Y, X + iY$ et X iY. Ceux de $X^3 + Y^3$ sont X + Y, X + jY et $X + j^2Y$. On voit donc que le polynôme qui définit C est somme de deux polynômes homogènes sans facteurs communs de degrés 4 et 3. Un tel polynôme est toujours irréductible. Puisque $\mathbb C$ est algébriquement clos, C est irréductible.

En caractéristique 2, on a

$$(X^2 + XY + Y^2)(X^2 + Y^2) + X^3 + Y^3 = (X + jY)(X + j^2Y)(X + Y)(X + Y + 1)$$

et C est donc composée des droites d'équation $X = jY, X = j^2Y, X = Y$ et X = Y + 1.

En caractéristique 3, les facteurs irréductibles du polynôme $(X^2 + XY + Y^2)(X^2 + Y^2)$ sont X - Y, X + iY et X - iY et celui de $X^3 + Y^3$ est X + Y. On voit donc comme sur $\mathbb C$ que X - iY et celui de $X^3 + Y^3$ est X - iY et celui de $X^3 + Y^3$ est X - Y.

- **1.8.8.** Si C n'était pas irréductible, on pourrait écrire $X^2Y^2 2XY(X+Y) + (X-Y)^2 = (F+X-Y)(G+X-Y)$ avec F et G homogènes de degré F. On aurait alors F(Y-X)(F+G) = 2XY(X+Y), ce qui est clairement impossible.
- **1.8.9.** On sait que C est la courbe algébrique d'équation

$$(X^2 + Y^2)^{(n+1)/2} = \prod_{k=0}^{n-1} (Y + tan \frac{k\pi}{n} X).$$

Puisque $(X^2 + Y^2)^{(n+1)/2}$ et $\prod^{n-1} (Y + tan \frac{k\pi}{n} X)$ sont homogènes de degrés respectifs n+1 et n, et n'ont pa&d0 facteurs communs (les racines du premier polynôme sont imaginaires et celles du second sont réelles), l'équation de C est irréductible. D'autre part, il est clair que C est infinie et il en résulte que C est irréductible.

- **1.9.1.** La courbe C est irréductible comme image de \mathbb{A}^1 qui est irréductible par l'application $\Phi: \mathbb{A}^1 \longrightarrow \mathbb{A}^n$, $t \longmapsto (t^{d_1}, \ldots, t^{d_n})$ qui est continue car polynomiale.
- **1.9.2.** On sait que l'application $\Phi: \mathbb{A}^1 \longrightarrow \mathbb{A}^3$, $t \longmapsto (t^2, t^2(t^2 1), t^3)$ qui paramètre C est un homéomorphisme de \mathbb{A}^1 sur C et que \mathbb{A}^1 est irréductible.
- **1.9.4.** Puisque \mathbb{A}^1 est irréductible, il en va de même de son image C par Φ .