Centre Universitaire Abdelhafid Boussouf

Institut SNV

Module: Biostatistique

Filière : Licence semestres 5 Biochimie et biotechnologie végétale.

TD N°03

Exercice 01:

On jette une pièce de monnaie 3 fois de suite.

- 1) Donner la liste de tous les résultats possibles en notant P pour Pile et F pour Face (exemple : PPF).
- 2) Donner la probabilité des événements suivants :

A « le tirage ne comporte que des Piles ».

B « le tirage comporte au moins une fois Face ».

Exercice 02:

Dans une assemblée de 250 personnes, on ne remarque que les hommes portant la cravate ou ayant les yeux bleus. Il y a 120 hommes qui portent la cravate, 85 hommes qui ont les yeux bleus, dont 50 portent la cravate.

On discute avec une personne choisie au hasard dans cette assemblée.

- 1) Quelle est la probabilité que ce soit un homme portant la cravate.
- 2) Quelle est la probabilité que ce soit un homme aux yeux bleus et portant la cravate.
- 3) Quelle est la probabilité que ce soit un homme aux yeux bleus ou portant la cravate.
- 4) Quelle est la probabilité de discuter avec une personne qui n'est ni un homme aux yeux bleus, ni un homme portant la cravate?

Exercice 03:

Lors d'un référendum, deux questions étaient posées.

65 % des personnes ont répondu « oui » à la première question, 51 % ont répondu « oui » à la seconde question, et 46 % ont répondu « oui » aux deux questions.

- 1) Quelle est la probabilité qu'une personne ait répondu « oui » à l'une ou l'autre des questions ?
- 2) Quelle est la probabilité qu'une personne ait répondu « non » aux deux questions ?

Exercice 04:

On lance un dé à 6 faces. On suppose que la probabilité d'apparition de chaque face est proportionnelle au numéro inscrit sur elle.

Calculer la probabilité d'apparition de chaque face.

Calculer la probabilité d'obtenir un nombre pair.

Module Biostatistique Licence semestres 5 Biochimie Et biotechnologie végétale

Solution TD 03

Solution Exercice 01:

1) A l'aide d'un arbre comme ci-contre,

On peut lister $\Omega = \{PPP; PPF; PFP; PFF; FPP; FPF; FFP; FFF\}$.

D'où $Card(\Omega) = 8$.

2) Les tirages étant équiprobables, on a $p(A) = \frac{Card(A)}{Card(\Omega)} = \frac{1}{8}$ (seul le tirage PPP convient).

Enfin, on remarque que $B = \overline{A}$ donc $p(B) = p(\overline{A}) = 1 - p(A) = 1 - \frac{1}{8} = \frac{7}{8}$.

Solution Exercice 02:

Le tableau suivant permet de dénombrer les différentes catégories :

	Cravate (événement C)	Pas de Cravate (événement \overline{C})	Total	
Yeux Bleus (événement B)	50	35	85	
Yeux non bleus (événement B)	70	95	165	
Total	120	130	250	

On note Ω l'univers des possibles, ensemble des 250 personnes. Ainsi $Card(\Omega) = 250$.

Il y a équiprobabilité des choix de personnes. Ainsi

1)
$$p(C) = \frac{Card(C)}{Card(\Omega)} = \frac{120}{250} = \frac{12}{25}$$
, 2) $p(B \cap C) = \frac{Card(B \cap C)}{Card(\Omega)} = \frac{50}{250} = \frac{1}{5}$,

3)
$$p(B \cup C) = p(B) + p(C) - p(B \cap C) = \frac{85}{250} + \frac{120}{250} - \frac{50}{250} = \frac{155}{250} = \frac{31}{50}$$
 (on pouvait aussi directement écrire

$$p(B \cup C) = \frac{Card(B \cup C)}{Card(\Omega)} = \frac{50 + 70 + 35}{250} = \frac{155}{250} = \frac{31}{50}$$
).

3)
$$p(\overline{B} \cap \overline{C}) = p(\overline{B \cup C}) = 1 - p(B \cup C) = 1 - \frac{31}{50} = \frac{19}{50}$$
.

Solution Exercice 03:

Si on note A l'événement « la personne a répondu oui à la première question » et B l'événement « la personne a répondu oui à la deuxième question », l'énoncé nous fournit p(A) = 0.65, p(B) = 0.51 et $p(A \cap B) = 0.46$.

1) On calcule
$$p(A \cup B) = p(A) + p(B) - p(A \cap B) = 0.65 + 0.51 - 0.46 = 0.7$$
.

2) On calcule
$$p(\overline{A} \cap \overline{B}) = p(\overline{A \cup B}) = 1 - p(A \cup B) = 1 - 0.7 = 0.3$$
.

Solution Exercice 04:

Si on note p la probabilité d'apparition du chiffre 1, les probabilités d'apparition des autres faces sont respectivement égales à 2p,3p,4p,5p,6p, puisque proportionnelles au numéro de chaque face.

Puisque la somme des probabilités des événements élémentaires vaut 1, on a p+2p+3p+4p+5p+6p=1, donc

$$21p = 1 \Leftrightarrow p = \frac{1}{21}$$
. On en déduit donc :

Face	1	2	3	4	5	6
Probabilité	1	2	3	4	5	6
	21	21	21	21	21	21

Et ainsi, l'événement A « obtenir un nombre pair » étant $A = \{2, 4, 6\}$, on a $p(A) = \frac{2}{21} + \frac{4}{21} + \frac{6}{21} = \frac{12}{21}$.

Il ne fallait surtout pas écrire $p(A) = \frac{Card(A)}{Card(\Omega)} = \frac{3}{6} = \frac{1}{2}$ car <u>il n'y a pas équiprobabilité des faces de dés.</u>

3